
Excel VBA
Notes for ProfessionalsExcel® VBA

Notes for Professionals

GoalKicker.com
Free Programming Books

Disclaimer
This is an unocial free book created for educational purposes and is

not aliated with ocial Excel® VBA group(s) or company(s).
All trademarks and registered trademarks are

the property of their respective owners

100+ pages
of professional hints and tricks

https://goalkicker.com
https://goalkicker.com

Contents
About 1 ...

Chapter 1: Getting started with Excel VBA 2 ...
Section 1.1: Opening the Visual Basic Editor (VBE) 3 ...
Section 1.2: Declaring Variables 5 ...
Section 1.3: Adding a new Object Library Reference 6 ...
Section 1.4: Hello World 10 ..
Section 1.5: Getting Started with the Excel Object Model 12 ..

Chapter 2: Arrays 16 ..
Section 2.1: Dynamic Arrays (Array Resizing and Dynamic Handling) 16 ...
Section 2.2: Populating arrays (adding values) 16 ...
Section 2.3: Jagged Arrays (Arrays of Arrays) 17 ..
Section 2.4: Check if Array is Initialized (If it contains elements or not) 17 ..
Section 2.5: Dynamic Arrays [Array Declaration, Resizing] 17 ...

Chapter 3: Conditional statements 19 ...
Section 3.1: The If statement 19 ..

Chapter 4: Ranges and Cells 21 ..
Section 4.1: Ways to refer to a single cell 21 ...
Section 4.2: Creating a Range 21 ...
Section 4.3: Oset Property 23 ...
Section 4.4: Saving a reference to a cell in a variable 23 ..
Section 4.5: How to Transpose Ranges (Horizontal to Vertical & vice versa) 23 ..

Chapter 5: Named Ranges 25 ...
Section 5.1: Define A Named Range 25 ..
Section 5.2: Using Named Ranges in VBA 25 ..
Section 5.3: Manage Named Range(s) using Name Manager 26 ...
Section 5.4: Named Range Arrays 28 ..

Chapter 6: Merged Cells / Ranges 29 ...
Section 6.1: Think twice before using Merged Cells/Ranges 29 ..

Chapter 7: Locating duplicate values in a range 30 ...
Section 7.1: Find duplicates in a range 30 ..

Chapter 8: User Defined Functions (UDFs) 32 ..
Section 8.1: Allow full column references without penalty 32 ..
Section 8.2: Count Unique values in Range 33 ..
Section 8.3: UDF - Hello World 33 ...

Chapter 9: Conditional formatting using VBA 36 ...
Section 9.1: FormatConditions.Add 36 ..
Section 9.2: Remove conditional format 37 ..
Section 9.3: FormatConditions.AddUniqueValues 37 ..
Section 9.4: FormatConditions.AddTop10 38 ...
Section 9.5: FormatConditions.AddAboveAverage 38 ..
Section 9.6: FormatConditions.AddIconSetCondition 38 ..

Chapter 10: Workbooks 41 ...
Section 10.1: When To Use ActiveWorkbook and ThisWorkbook 41 ...
Section 10.2: Changing The Default Number of Worksheets In A New Workbook 41 ..
Section 10.3: Application Workbooks 41 ..
Section 10.4: Opening A (New) Workbook, Even If It's Already Open 42 ..

Section 10.5: Saving A Workbook Without Asking The User 43 ...

Chapter 11: Working with Excel Tables in VBA 44 ..
Section 11.1: Instantiating a ListObject 44 ...
Section 11.2: Working with ListRows / ListColumns 44 ..
Section 11.3: Converting an Excel Table to a normal range 44 ..

Chapter 12: Loop through all Sheets in Active Workbook 45 ...
Section 12.1: Retrieve all Worksheets Names in Active Workbook 45 ...
Section 12.2: Loop Through all Sheets in all Files in a Folder 45 ..

Chapter 13: Use Worksheet object and not Sheet object 47 ..
Section 13.1: Print the name of the first object 47 ..

Chapter 14: Methods for Finding the Last Used Row or Column in a Worksheet 48
Section 14.1: Find the Last Non-Empty Cell in a Column 48 ...
Section 14.2: Find the Last Non-Empty Row in Worksheet 48 ...
Section 14.3: Find the Last Non-Empty Column in Worksheet 49 ..
Section 14.4: Find the Last Non-Empty Cell in a Row 50 ..
Section 14.5: Get the row of the last cell in a range 50 ...
Section 14.6: Find Last Row Using Named Range 50 ...
Section 14.7: Last cell in Range.CurrentRegion 51 ..
Section 14.8: Find the Last Non-Empty Cell in Worksheet - Performance (Array) 51 ...

Chapter 15: Creating a drop-down menu in the Active Worksheet with a Combo Box 54
Section 15.1: Example 2: Options Not Included 54 ...
Section 15.2: Jimi Hendrix Menu 55 ...

Chapter 16: File System Object 57 ..
Section 16.1: File, folder, drive exists 57 ...
Section 16.2: Basic file operations 57 ..
Section 16.3: Basic folder operations 58 ...
Section 16.4: Other operations 58 ...

Chapter 17: Pivot Tables 60 ..
Section 17.1: Adding Fields to a Pivot Table 60 ..
Section 17.2: Creating a Pivot Table 60 ..
Section 17.3: Pivot Table Ranges 63 ...
Section 17.4: Formatting the Pivot Table Data 63 ...

Chapter 18: Binding 64 ..
Section 18.1: Early Binding vs Late Binding 64 ...

Chapter 19: autofilter ; Uses and best practices 66 ..
Section 19.1: Smartfilter! 66 ..

Chapter 20: Application object 70 ..
Section 20.1: Simple Application Object example: Display Excel and VBE Version 70 ..
Section 20.2: Simple Application Object example: Minimize the Excel window 70 ..

Chapter 21: Charts and Charting 71 ...
Section 21.1: Creating a Chart with Ranges and a Fixed Name 71 ..
Section 21.2: Creating an empty Chart 72 ...
Section 21.3: Create a Chart by Modifying the SERIES formula 73 ...
Section 21.4: Arranging Charts into a Grid 75 ..

Chapter 22: CustomDocumentProperties in practice 79 ..
Section 22.1: Organizing new invoice numbers 79 ..

Chapter 23: PowerPoint Integration Through VBA 82 ..
Section 23.1: The Basics: Launching PowerPoint from VBA 82 ..

Chapter 24: How to record a Macro 83 ...
Section 24.1: How to record a Macro 83 ...

Chapter 25: SQL in Excel VBA - Best Practices 85 ..
Section 25.1: How to use ADODB.Connection in VBA? 85 ...

Chapter 26: Excel-VBA Optimization 87 ...
Section 26.1: Optimizing Error Search by Extended Debugging 87 ...
Section 26.2: Disabling Worksheet Updating 88 ...
Section 26.3: Row Deletion - Performance 88 ...
Section 26.4: Disabling All Excel Functionality Before executing large macros 89 ...
Section 26.5: Checking time of execution 90 ...
Section 26.6: Using With blocks 91 ...

Chapter 27: VBA Security 93 ...
Section 27.1: Password Protect your VBA 93 ...

Chapter 28: Debugging and Troubleshooting 94 ...
Section 28.1: Immediate Window 94 ...
Section 28.2: Use Timer to Find Bottlenecks in Performance 95 ..
Section 28.3: Debugger Locals Window 95 ...
Section 28.4: Debug.Print 96 ..
Section 28.5: Stop 97 ..
Section 28.6: Adding a Breakpoint to your code 97 ...

Chapter 29: VBA Best Practices 98 ...
Section 29.1: ALWAYS Use "Option Explicit" 98 ..
Section 29.2: Work with Arrays, Not With Ranges 100 ...
Section 29.3: Switch o properties during macro execution 101 ..
Section 29.4: Use VB constants when available 102 ..
Section 29.5: Avoid using SELECT or ACTIVATE 103 ..
Section 29.6: Always define and set references to all Workbooks and Sheets 105 ..
Section 29.7: Use descriptive variable naming 105 ..
Section 29.8: Document Your Work 106 ..
Section 29.9: Error Handling 107 ..
Section 29.10: Never Assume The Worksheet 109 ..
Section 29.11: Avoid re-purposing the names of Properties or Methods as your variables 109
Section 29.12: Avoid using ActiveCell or ActiveSheet in Excel 110 ...
Section 29.13: WorksheetFunction object executes faster than a UDF equivalent 111 ..

Chapter 30: Excel VBA Tips and Tricks 113 ..
Section 30.1: Using xlVeryHidden Sheets 113 ..
Section 30.2: Using Strings with Delimiters in Place of Dynamic Arrays 114 ...
Section 30.3: Worksheet .Name, .Index or .CodeName 114 ...
Section 30.4: Double Click Event for Excel Shapes 116 ..
Section 30.5: Open File Dialog - Multiple Files 117 ...

Chapter 31: Common Mistakes 118 ...
Section 31.1: Qualifying References 118 ...
Section 31.2: Deleting rows or columns in a loop 119 ...
Section 31.3: ActiveWorkbook vs. ThisWorkbook 119 ...
Section 31.4: Single Document Interface Versus Multiple Document Interfaces 120 ..

Credits 122 ..

You may also like 124 ..

GoalKicker.com – Excel® VBA Notes for Professionals 1

About

Please feel free to share this PDF with anyone for free,
latest version of this book can be downloaded from:

https://goalkicker.com/ExcelVBABook

This Excel® VBA Notes for Professionals book is compiled from Stack Overflow
Documentation, the content is written by the beautiful people at Stack Overflow.
Text content is released under Creative Commons BY-SA, see credits at the end

of this book whom contributed to the various chapters. Images may be copyright
of their respective owners unless otherwise specified

This is an unofficial free book created for educational purposes and is not
affiliated with official Excel® VBA group(s) or company(s) nor Stack Overflow. All

trademarks and registered trademarks are the property of their respective
company owners

The information presented in this book is not guaranteed to be correct nor
accurate, use at your own risk

Please send feedback and corrections to web@petercv.com

https://goalkicker.com/ExcelVBABook
https://archive.org/details/documentation-dump.7z
https://archive.org/details/documentation-dump.7z
mailto:web@petercv.com
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Excel® VBA Notes for Professionals 2

Chapter 1: Getting started with Excel VBA
Microsoft Excel includes a comprehensive macro programming language called VBA. This programming language
provides you with at least three additional resources:

Automatically drive Excel from code using Macros. For the most part, anything that the user can do by1.
manipulating Excel from the user interface can be done by writing code in Excel VBA.
Create new, custom worksheet functions.2.
Interact Excel with other applications such as Microsoft Word, PowerPoint, Internet Explorer, Notepad, etc.3.

VBA stands for Visual Basic for Applications. It is a custom version of the venerable Visual Basic programming
language that has powered Microsoft Excel's macros since the mid-1990s.

IMPORTANT
Please ensure any examples or topics created within the excel-vba tag are specific and relevant to the use of VBA
with Microsoft Excel. Any suggested topics or examples provided that are generic to the VBA language should be
declined in order to prevent duplication of efforts.

on-topic examples:

✓ Creating and interacting with worksheet objects
✓ The WorksheetFunction class and respective methods
✓ Using the xlDirection enumeration to navigate a range

off-topic examples:

✗ How to create a 'for each' loop
✗ MsgBox class and how to display a message
✗ Using WinAPI in VBA

VB
Version Release Date

VB6 1998-10-01

VB7 2001-06-06

WIN32 1998-10-01

WIN64 2001-06-06

MAC 1998-10-01

Excel
Version Release Date

16 2016-01-01

15 2013-01-01

14 2010-01-01

12 2007-01-01

11 2003-01-01

10 2001-01-01

9 1999-01-01

https://en.wikipedia.org/wiki/Microsoft_Excel
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Excel® VBA Notes for Professionals 3

8 1997-01-01

7 1995-01-01

5 1993-01-01

2 1987-01-01

Section 1.1: Opening the Visual Basic Editor (VBE)
Step 1: Open a Workbook

Step 2 Option A: Press Alt + F11

This is the standard shortcut to open the VBE.

Step 2 Option B: Developer Tab --> View Code

First, the Developer Tab must be added to the ribbon. Go to File -> Options -> Customize Ribbon, then check the
box for developer.

https://i.stack.imgur.com/MHMA9.png
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Excel® VBA Notes for Professionals 4

Then, go to the developer tab and click "View Code" or "Visual Basic"

Step 2 Option C: View tab > Macros > Click Edit button to open an Existing Macro

All three of these options will open the Visual Basic Editor (VBE):

https://i.stack.imgur.com/8WoiR.png
https://i.stack.imgur.com/388eU.png
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Excel® VBA Notes for Professionals 5

Section 1.2: Declaring Variables
To explicitly declare variables in VBA, use the Dim statement, followed by the variable name and type. If a variable is
used without being declared, or if no type is specified, it will be assigned the type Variant.

Use the Option Explicit statement on first line of a module to force all variables to be declared before usage (see
ALWAYS Use "Option Explicit").

Always using Option Explicit is highly recommended because it helps prevent typo/spelling errors and ensures
variables/objects will stay their intended type.

Option Explicit

Sub Example()
 Dim a As Integer
 a = 2
 Debug.Print a
 'Outputs: 2

 Dim b As Long
 b = a + 2
 Debug.Print b
 'Outputs: 4

 Dim c As String
 c = "Hello, world!"
 Debug.Print c
 'Outputs: Hello, world!
End Sub

Multiple variables can be declared on a single line using commas as delimiters, but each type must be declared
individually, or they will default to the Variant type.

Dim Str As String, IntOne, IntTwo As Integer, Lng As Long

https://i.stack.imgur.com/azT5a.png
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Excel® VBA Notes for Professionals 6

Debug.Print TypeName(Str) 'Output: String
Debug.Print TypeName(IntOne) 'Output: Variant <--- !!!
Debug.Print TypeName(IntTwo) 'Output: Integer
Debug.Print TypeName(Lng) 'Output: Long

Variables can also be declared using Data Type Character suffixes ($ % & ! # @), however using these are
increasingly discouraged.

 Dim this$ 'String
 Dim this% 'Integer
 Dim this& 'Long
 Dim this! 'Single
 Dim this# 'Double
 Dim this@ 'Currency

Other ways of declaring variables are:

Static like: Static CounterVariable as Integer

When you use the Static statement instead of a Dim statement, the declared variable will retain its value
between calls.

Public like: Public CounterVariable as Integer

Public variables can be used in any procedures in the project. If a public variable is declared in a standard
module or a class module, it can also be used in any projects that reference the project where the public
variable is declared.

Private like: Private CounterVariable as Integer

Private variables can be used only by procedures in the same module.

Source and more info:

MSDN-Declaring Variables

Type Characters (Visual Basic)

Section 1.3: Adding a new Object Library Reference
The procedure describes how to add an Object library reference, and afterwards how to declare new variables with
reference to the new library class objects.

The example below shows how to add the PowerPoint library to the existing VB Project. As can be seen, currently
the PowerPoint Object library is not available.

https://msdn.microsoft.com/en-us/library/office/gg264241.aspx
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/type-characters
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Excel® VBA Notes for Professionals 7

Step 1: Select Menu Tools --> References…

Step 2: Select the Reference you want to add. This example we scroll down to find “Microsoft PowerPoint 14.0
Object Library”, and then press “OK”.

http://i.stack.imgur.com/0IwJy.jpg
http://i.stack.imgur.com/yfb7J.jpg
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Excel® VBA Notes for Professionals 8

Note: PowerPoint 14.0 means that Office 2010 version is installed on the PC.

Step 3: in the VB Editor, once you press Ctrl+Space together, you get the autocomplete option of PowerPoint.

After selecting PowerPoint and pressing ., another menu appears with all objects options related to the PowerPoint
Object Library. This example shows how to select the PowerPoint's object Application.

http://i.stack.imgur.com/vsKbO.jpg
http://i.stack.imgur.com/6DoDc.jpg
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Excel® VBA Notes for Professionals 9

Step 4: Now the user can declare more variables using the PowerPoint object library.

Declare a variable that is referencing the Presentation object of the PowerPoint object library.

Declare another variable that is referencing the Slide object of the PowerPoint object library.

http://i.stack.imgur.com/Av3V7.jpg
http://i.stack.imgur.com/dzCOc.jpg
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Excel® VBA Notes for Professionals 10

Now the variables declaration section looks like in the screen-shot below, and the user can start using these
variables in his code.

Code version of this tutorial:

Option Explicit

Sub Export_toPPT()

Dim ppApp As PowerPoint.Application
Dim ppPres As PowerPoint.Presentation
Dim ppSlide As PowerPoint.Slide

' here write down everything you want to do with the PowerPoint Class and objects

End Sub

Section 1.4: Hello World
Open the Visual Basic Editor (see Opening the Visual Basic Editor)1.
Click Insert --> Module to add a new Module :2.

http://i.stack.imgur.com/QARnI.jpg
http://i.stack.imgur.com/bfQff.jpg
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Excel® VBA Notes for Professionals 11

Copy and Paste the following code in the new module :3.

 Sub hello()
 MsgBox "Hello World !"
 End Sub

To obtain :

Click on the green “play” arrow (or press F5) in the Visual Basic toolbar to run the program:4.

Select the new created sub "hello" and click Run :5.

http://i.stack.imgur.com/0KhKM.png
http://i.stack.imgur.com/wv7kE.png
http://i.stack.imgur.com/aFU8E.png
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Excel® VBA Notes for Professionals 12

Done, your should see the following window:6.

Section 1.5: Getting Started with the Excel Object Model

This example intend to be a gentle introduction to the Excel Object Model for beginners.

Open the Visual Basic Editor (VBE)1.
Click View --> Immediate Window to open the Immediate Window (or ctrl + G):2.

You should see the following Immediate Window at the bottom on VBE:3.

http://i.stack.imgur.com/Mcj1X.png
http://i.stack.imgur.com/j88GC.png
https://i.stack.imgur.com/I57Nk.png
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Excel® VBA Notes for Professionals 13

This window allow you to directly test some VBA code. So let's start, type in this console :

?Worksheets.

VBE has intellisense and then it should open a tooltip as in the following figure :

Select .Count in the list or directly type .Cout to obtain :

?Worksheets.Count

Then press Enter. The expression is evaluated and it should returns 1. This indicates the number of4.
Worksheet currently present in the workbook. The question mark (?) is an alias for Debug.Print.

Worksheets is an Object and Count is a Method. Excel has several Object (Workbook, Worksheet, Range, Chart ..)
and each of one contains specific methods and properties. You can find the complete list of Object in the Excel VBA
reference. Worksheets Object is presented here .

This Excel VBA reference should become your primary source of information regarding the Excel Object
Model.

Now let's try another expression, type (without the ? character):5.

Worksheets.Add().Name = "StackOveflow"

Press Enter. This should create a new worksheet called StackOverflow.:6.

To understand this expression you need to read the Add function in the aforementioned Excel reference. You will
find the following:

Add: Creates a new worksheet, chart, or macro sheet.
The new worksheet becomes the active sheet.
Return Value: An Object value that represents the new worksheet, chart,

https://i.stack.imgur.com/msMIR.png
https://i.stack.imgur.com/f1i7c.png
https://msdn.microsoft.com/en-us/library/ff194068.aspx
https://msdn.microsoft.com/en-us/library/ff194068.aspx
https://msdn.microsoft.com/en-us/library/ff821537.aspx
https://i.stack.imgur.com/7YbHr.png
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Excel® VBA Notes for Professionals 14

 or macro sheet.

So the Worksheets.Add() create a new worksheet and return it. Worksheet(without s) is itself a Object that can be
found in the documentation and Name is one of its property (see here). It is defined as :

Worksheet.Name Property: Returns or sets a String value that
 represents the object name.

So, by investigating the different objects definitions we are able to understand this code Worksheets.Add().Name =
"StackOveflow".

Add() creates and add a new worksheet and return a reference to it, then we set its Name property to
"StackOverflow"

Now let's be more formal, Excel contains several Objects. These Objects may be composed of one or several
collection(s) of Excel objects of the same class. It is the case for WorkSheets which is a collection of Worksheet
object. Each Object has some properties and methods that the programmer can interact with.

The Excel Object model refers to the Excel object hierarchy

At the top of all objects is the Application object, it represents the Excel instance itself. Programming in VBA
requires a good understanding of this hierarchy because we always need a reference to an object to be able to call
a Method or to Set/Get a property.

The (very simplified) Excel Object Model can be represented as,

 Application
 Workbooks
 Workbook
 Worksheets
 Worksheet
 Range

A more detail version for the Worksheet Object (as it is in Excel 2007) is shown below,

https://msdn.microsoft.com/en-us/library/ff194464.aspx
https://msdn.microsoft.com/en-us/library/ff194464.aspx
https://msdn.microsoft.com/en-us/library/ff841127.aspx
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Excel® VBA Notes for Professionals 15

The full Excel Object Model can be found here.

Finally some objects may have events (ex: Workbook.WindowActivate) that are also part of the Excel Object Model.

https://i.stack.imgur.com/3yhD8.png
https://msdn.microsoft.com/en-us/library/ff194068(v=office.15).aspx
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Excel® VBA Notes for Professionals 16

Chapter 2: Arrays
Section 2.1: Dynamic Arrays (Array Resizing and Dynamic
Handling)
Due to not being Excel-VBA exclusive contents this Example has been moved to VBA documentation.

Link: Dynamic Arrays (Array Resizing and Dynamic Handling)

Section 2.2: Populating arrays (adding values)
There are multiple ways to populate an array.

Directly
'one-dimensional
Dim arrayDirect1D(2) As String
arrayDirect(0) = "A"
arrayDirect(1) = "B"
arrayDirect(2) = "C"

'multi-dimensional (in this case 3D)
Dim arrayDirectMulti(1, 1, 2)
arrayDirectMulti(0, 0, 0) = "A"
arrayDirectMulti(0, 0, 1) = "B"
arrayDirectMulti(0, 0, 2) = "C"
arrayDirectMulti(0, 1, 0) = "D"
'...

Using Array() function
'one-dimensional only
Dim array1D As Variant 'has to be type variant
array1D = Array(1, 2, "A")
'-> array1D(0) = 1, array1D(1) = 2, array1D(2) = "A"

From range
Dim arrayRange As Variant 'has to be type variant

'putting ranges in an array always creates a 2D array (even if only 1 row or column)
'starting at 1 and not 0, first dimension is the row and the second the column
arrayRange = Range("A1:C10").Value
'-> arrayRange(1,1) = value in A1
'-> arrayRange(1,2) = value in B1
'-> arrayRange(5,3) = value in C5
'...

'Yoo can get an one-dimensional array from a range (row or column)
'by using the worksheet functions index and transpose:

'one row from range into 1D-Array:
arrayRange = Application.WorksheetFunction.Index(Range("A1:C10").Value, 3, 0)
'-> row 3 of range into 1D-Array
'-> arrayRange(1) = value in A3, arrayRange(2) = value in B3, arrayRange(3) = value in C3

'one column into 1D-Array:
'limited to 65536 rows in the column, reason: limit of .Transpose

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Excel® VBA Notes for Professionals 17

arrayRange = Application.WorksheetFunction.Index(_
Application.WorksheetFunction.Transpose(Range("A1:C10").Value), 2, 0)
'-> column 2 of range into 1D-Array
'-> arrayRange(1) = value in B1, arrayRange(2) = value in B2, arrayRange(3) = value in B3
'...

'By using Evaluate() - shorthand [] - you can transfer the
'range to an array and change the values at the same time.
'This is equivalent to an array formula in the sheet:
arrayRange = [(A1:C10*3)]
arrayRange = [(A1:C10&"_test")]
arrayRange = [(A1:B10*C1:C10)]
'...

2D with Evaluate()
Dim array2D As Variant
'[] ist a shorthand for evaluate()
'Arrays defined with evaluate start at 1 not 0
array2D = [{"1A","1B","1C";"2A","2B","3B"}]
'-> array2D(1,1) = "1A", array2D(1,2) = "1B", array2D(2,1) = "2A" ...

'if you want to use a string to fill the 2D-Array:
Dim strValues As String
strValues = "{""1A"",""1B"",""1C"";""2A"",""2B"",""2C""}"
array2D = Evaluate(strValues)

Using Split() function
Dim arraySplit As Variant 'has to be type variant
arraySplit = Split("a,b,c", ",")
'-> arraySplit(0) = "a", arraySplit(1) = "b", arraySplit(2) = "c"

Section 2.3: Jagged Arrays (Arrays of Arrays)
Due to not being Excel-VBA exclusive contents this Example has been moved to VBA documentation.

Link: Jagged Arrays (Arrays of Arrays)

Section 2.4: Check if Array is Initialized (If it contains elements
or not)
A common problem might be trying to iterate over Array which has no values in it. For example:

Dim myArray() As Integer
For i = 0 To UBound(myArray) 'Will result in a "Subscript Out of Range" error

To avoid this issue, and to check if an Array contains elements, use this oneliner:

If Not Not myArray Then MsgBox UBound(myArray) Else MsgBox "myArray not initialised"

Section 2.5: Dynamic Arrays [Array Declaration, Resizing]
Sub Array_clarity()

Dim arr() As Variant 'creates an empty array
Dim x As Long
Dim y As Long

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Excel® VBA Notes for Professionals 18

x = Range("A1", Range("A1").End(xlDown)).Cells.Count
y = Range("A1", Range("A1").End(xlToRight)).Cells.Count

ReDim arr(0 To x, 0 To y) 'fixing the size of the array

For x = LBound(arr, 1) To UBound(arr, 1)
 For y = LBound(arr, 2) To UBound(arr, 2)
 arr(x, y) = Range("A1").Offset(x, y) 'storing the value of Range("A1:E10") from activesheet
in x and y variables
 Next
Next

'Put it on the same sheet according to the declaration:
Range("A14").Resize(UBound(arr, 1), UBound(arr, 2)).Value = arr

End Sub

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Excel® VBA Notes for Professionals 19

Chapter 3: Conditional statements
Section 3.1: The If statement
The If control statement allows different code to be executed depending upon the evaluation of a conditional
(Boolean) statement. A conditional statement is one that evaluates to either True or False, e.g. x > 2.

There are three patterns that can be used when implementing an If statement, which are described below. Note
that an If conditional evaluation is always followed by a Then.

1. Evaluating one If conditional statement and doing something if it is True

Single line If statement

This is the shortest way to use an If and it is useful when only one statement needs to be carried out upon a True
evaluation. When using this syntax, all of the code must be on a single line. Do not include an End If at the end of
the line.

If [Some condition is True] Then [Do something]

If block

If multiple lines of code need to be executed upon a True evaluation, an If block may be used.

If [Some condition is True] Then
 [Do some things]
End If

Note that, if a multi-line If block is used, a corresponding End If is required.

2. Evaluating one conditional If statement, doing one thing if it is True and doing something else if it is
False

Single line If, Else statement

This may be used if one statement is to be carried out upon a True evaluation and a different statement is to be
carried out on a False evaluation. Be careful using this syntax, as it is often less clear to readers that there is an
Else statement. When using this syntax, all of the code must be on a single line. Do not include an End If at the
end of the line.

If [Some condition is True] Then [Do something] Else [Do something else]

If, Else block

Use an If, Else block to add clarity to your code, or if multiple lines of code need to be executed under either a
True or a False evaluation.

If [Some condition is True] Then
 [Do some things]
Else
 [Do some other things]
End If

Note that, if a multi-line If block is used, a corresponding End If is required.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Excel® VBA Notes for Professionals 20

3. Evaluating many conditional statements, when preceding statements are all False, and doing something
different for each one

This pattern is the most general use of If and would be used when there are many non-overlapping conditions that
require different treatment. Unlike the first two patterns, this case requires the use of an If block, even if only one
line of code will be executed for each condition.

If, ElseIf, ..., Else block

Instead of having to create many If blocks one below another, an ElseIf may be used evaluate an extra condition.
The ElseIf is only evaluated if any preceding If evaluation is False.

If [Some condition is True] Then
 [Do some thing(s)]
ElseIf [Some other condition is True] Then
 [Do some different thing(s)]
Else 'Everything above has evaluated to False
 [Do some other thing(s)]
End If

As many ElseIf control statements may be included between an If and an End If as required. An Else control
statement is not required when using ElseIf (although it is recommended), but if it is included, it must be the final
control statement before the End If.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Excel® VBA Notes for Professionals 21

Chapter 4: Ranges and Cells
Section 4.1: Ways to refer to a single cell
The simplest way to refer to a single cell on the current Excel worksheet is simply to enclose the A1 form of its
reference in square brackets:

[a3] = "Hello!"

Note that square brackets are just convenient syntactic sugar for the Evaluate method of the Application object,
so technically, this is identical to the following code:

Application.Evaluate("a3") = "Hello!"

You could also call the Cells method which takes a row and a column and returns a cell reference.

Cells(3, 1).Formula = "=A1+A2"

Remember that whenever you pass a row and a column to Excel from VBA, the row is always first, followed by the
column, which is confusing because it is the opposite of the common A1 notation where the column appears first.

In both of these examples, we did not specify a worksheet, so Excel will use the active sheet (the sheet that is in
front in the user interface). You can specify the active sheet explicitly:

ActiveSheet.Cells(3, 1).Formula = "=SUM(A1:A2)"

Or you can provide the name of a particular sheet:

Sheets("Sheet2").Cells(3, 1).Formula = "=SUM(A1:A2)"

There are a wide variety of methods that can be used to get from one range to another. For example, the Rows
method can be used to get to the individual rows of any range, and the Cells method can be used to get to
individual cells of a row or column, so the following code refers to cell C1:

ActiveSheet.Rows(1).Cells(3).Formula = "hi!"

Section 4.2: Creating a Range
A Range cannot be created or populated the same way a string would:

Sub RangeTest()
 Dim s As String
 Dim r As Range 'Specific Type of Object, with members like Address, WrapText, AutoFill, etc.

 ' This is how we fill a String:
 s = "Hello World!"

 ' But we cannot do this for a Range:
 r = Range("A1") '//Run. Err.: 91 Object variable or With block variable not set//

 ' We have to use the Object approach, using keyword Set:
 Set r = Range("A1")
End Sub

https://en.wikipedia.org/wiki/Syntactic_sugar
https://msdn.microsoft.com/en-us/library/office/ff838238.aspx
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Excel® VBA Notes for Professionals 22

It is considered best practice to qualify your references, so from now on we will use the same approach here.
More about Creating Object Variables (e.g. Range) on MSDN . More about Set Statement on MSDN.

There are different ways to create the same Range:

Sub SetRangeVariable()
 Dim ws As Worksheet
 Dim r As Range

 Set ws = ThisWorkbook.Worksheets(1) ' The first Worksheet in Workbook with this code in it

 ' These are all equivalent:
 Set r = ws.Range("A2")
 Set r = ws.Range("A" & 2)
 Set r = ws.Cells(2, 1) ' The cell in row number 2, column number 1
 Set r = ws.[A2] 'Shorthand notation of Range.
 Set r = Range("NamedRangeInA2") 'If the cell A2 is named NamedRangeInA2. Note, that this is
Sheet independent.
 Set r = ws.Range("A1").Offset(1, 0) ' The cell that is 1 row and 0 columns away from A1
 Set r = ws.Range("A1").Cells(2,1) ' Similar to Offset. You can "go outside" the original Range.

 Set r = ws.Range("A1:A5").Cells(2) 'Second cell in bigger Range.
 Set r = ws.Range("A1:A5").Item(2) 'Second cell in bigger Range.
 Set r = ws.Range("A1:A5")(2) 'Second cell in bigger Range.
End Sub

Note in the example that Cells(2, 1) is equivalent to Range("A2"). This is because Cells returns a Range object.
Some sources: Chip Pearson-Cells Within Ranges; MSDN-Range Object; John Walkenback-Referring To Ranges In
Your VBA Code.

Also note that in any instance where a number is used in the declaration of the range, and the number itself is
outside of quotation marks, such as Range("A" & 2), you can swap that number for a variable that contains an
integer/long. For example:

Sub RangeIteration()
 Dim wb As Workbook, ws As Worksheet
 Dim r As Range

 Set wb = ThisWorkbook
 Set ws = wb.Worksheets(1)

 For i = 1 To 10
 Set r = ws.Range("A" & i)
 ' When i = 1, the result will be Range("A1")
 ' When i = 2, the result will be Range("A2")
 ' etc.
 ' Proof:
 Debug.Print r.Address
 Next i
End Sub

If you are using double loops, Cells is better:

Sub RangeIteration2()
 Dim wb As Workbook, ws As Worksheet
 Dim r As Range

 Set wb = ThisWorkbook
 Set ws = wb.Worksheets(1)

https://msdn.microsoft.com/en-us/library/office/gg251791.aspx
https://msdn.microsoft.com/en-us/library/office/gg251642.aspx
http://www.cpearson.com/Excel/cells.htm
https://msdn.microsoft.com/en-us/library/office/ff838238.aspx
http://spreadsheetpage.com/index.php/tip/referring_to_ranges_in_your_vba_code/
http://spreadsheetpage.com/index.php/tip/referring_to_ranges_in_your_vba_code/
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Excel® VBA Notes for Professionals 23

 For i = 1 To 10
 For j = 1 To 10
 Set r = ws.Cells(i, j)
 ' When i = 1 and j = 1, the result will be Range("A1")
 ' When i = 2 and j = 1, the result will be Range("A2")
 ' When i = 1 and j = 2, the result will be Range("B1")
 ' etc.
 ' Proof:
 Debug.Print r.Address
 Next j
 Next i
End Sub

Section 4.3: Oset Property
Offset(Rows, Columns) - The operator used to statically reference another point from the current cell. Often
used in loops. It should be understood that positive numbers in the rows section moves right, wheres as
negatives move left. With the columns section positives move down and negatives move up.

i.e

Private Sub this()
 ThisWorkbook.Sheets("Sheet1").Range("A1").Offset(1, 1).Select
 ThisWorkbook.Sheets("Sheet1").Range("A1").Offset(1, 1).Value = "New Value"
 ActiveCell.Offset(-1, -1).Value = ActiveCell.Value
 ActiveCell.Value = vbNullString
End Sub

This code selects B2, puts a new string there, then moves that string back to A1 afterwards clearing out B2.

Section 4.4: Saving a reference to a cell in a variable
To save a reference to a cell in a variable, you must use the Set syntax, for example:

Dim R as Range
Set R = ActiveSheet.Cells(3, 1)

later...

R.Font.Color = RGB(255, 0, 0)

Why is the Set keyword required? Set tells Visual Basic that the value on the right hand side of the = is meant to be
an object.

Section 4.5: How to Transpose Ranges (Horizontal to Vertical
& vice versa)
Sub TransposeRangeValues()
 Dim TmpArray() As Variant, FromRange as Range, ToRange as Range

 set FromRange = Sheets("Sheet1").Range("a1:a12") 'Worksheets(1).Range("a1:p1")
 set ToRange = ThisWorkbook.Sheets("Sheet1").Range("a1")
 'ThisWorkbook.Sheets("Sheet1").Range("a1")

 TmpArray = Application.Transpose(FromRange.Value)
 FromRange.Clear

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Excel® VBA Notes for Professionals 24

 ToRange.Resize(FromRange.Columns.Count,FromRange.Rows.Count).Value2 = TmpArray
End Sub

Note: Copy/PasteSpecial also has a Paste Transpose option which updates the transposed cells' formulas as well.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Excel® VBA Notes for Professionals 25

Chapter 5: Named Ranges
Topic should include information specifically related to named ranges in Excel including methods for creating,
modifying, deleting, and accessing defined named ranges.

Section 5.1: Define A Named Range
Using named ranges allows you to describe the meaning of a cell(s) contents and use this defined name in place of
an actual cell address.

For example, formula =A5*B5 can be replaced with =Width*Height to make the formula much easier to read and
understand.

To define a new named range, select cell or cells to name and then type new name into the Name Box next to the
formula bar.

Note: Named Ranges default to global scope meaning that they can be accessed from anywhere within
the workbook. Older versions of Excel allow for duplicate names so care must be taken to prevent
duplicate names of global scope otherwise results will be unpredictable. Use Name Manager from
Formulas tab to change scope.

Section 5.2: Using Named Ranges in VBA
Create new named range called ‘MyRange’ assigned to cell A1

ThisWorkbook.Names.Add Name:="MyRange", _
 RefersTo:=Worksheets("Sheet1").Range("A1")

Delete defined named range by name

ThisWorkbook.Names("MyRange").Delete

Access Named Range by name

Dim rng As Range
Set rng = ThisWorkbook.Worksheets("Sheet1").Range("MyRange")
Call MsgBox("Width = " & rng.Value)

https://i.stack.imgur.com/KqLbf.gif
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Excel® VBA Notes for Professionals 26

Access a Named Range with a Shortcut

Just like any other range, named ranges can be accessed directly with through a shortcut notation that does not
require a Range object to be created. The three lines from the code excerpt above can be replaced by a single line:

Call MsgBox("Width = " & [MyRange])

Note: The default property for a Range is its Value, so [MyRange] is the same as [MyRange].Value

You can also call methods on the range. The following selects MyRange:

[MyRange].Select

Note: One caveat is that the shortcut notation does not work with words that are used elsewhere in the
VBA library. For example, a range named Width would not be accessible as [Width] but would work as
expected if accessed through ThisWorkbook.Worksheets("Sheet1").Range("Width")

Section 5.3: Manage Named Range(s) using Name Manager
Formulas tab > Defined Names group > Name Manager button

Named Manager allows you to:

Create or change name1.
Create or change cell reference2.
Create or change scope3.
Delete existing named range4.

http://www.informit.com/articles/article.aspx?p=2021718&seqNum=4
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Excel® VBA Notes for Professionals 27

Named Manager provides a useful quick look for broken links.

https://i.stack.imgur.com/62GIj.jpg
https://i.stack.imgur.com/wx6B0.jpg
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Excel® VBA Notes for Professionals 28

Section 5.4: Named Range Arrays
Example sheet

Code

Sub Example()
 Dim wks As Worksheet
 Set wks = ThisWorkbook.Worksheets("Sheet1")

 Dim units As Range
 Set units = ThisWorkbook.Names("Units").RefersToRange

 Worksheets("Sheet1").Range("Year_Max").Value = WorksheetFunction.Max(units)
 Worksheets("Sheet1").Range("Year_Min").Value = WorksheetFunction.Min(units)
End Sub

Result

https://i.stack.imgur.com/Q7YIB.png
https://i.stack.imgur.com/RYAKu.png
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Excel® VBA Notes for Professionals 29

Chapter 6: Merged Cells / Ranges
Section 6.1: Think twice before using Merged Cells/Ranges
First of all, Merged Cells are there only to improve the look of your sheets.

So it is literally the last thing that you should do, once your sheet and workbook are totally functional!

Where is the data in a Merged Range?

When you merge a Range, you'll only display one block.

The data will be in the very first cell of that Range, and the others will be empty cells!

One good point about it : no need to fill all the cells or the range once merged, just fill the first cell! ;)

The other aspects of this merged ranged are globally negative :

If you use a method for finding last row or column, you'll risk some errors

If you loop through rows and you have merged some ranges for a better readability, you'll encounter empty
cells and not the value displayed by the merged range

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Excel® VBA Notes for Professionals 30

Chapter 7: Locating duplicate values in a
range
At certain points, you will be evaluating a range of data and you will need to locate the duplicates in it. For bigger
data sets, there are a number of approaches you can take that use either VBA code or conditional functions. This
example uses a simple if-then condition within two nested for-next loops to test whether each cell in the range is
equal in value to any other cell in the range.

Section 7.1: Find duplicates in a range
The following tests range A2 to A7 for duplicate values. Remark: This example illustrates a possible solution as a
first approach to a solution. It's faster to use an array than a range and one could use collections or dictionaries or
xml methods to check for duplicates.

 Sub find_duplicates()
' Declare variables
 Dim ws As Worksheet ' worksheet
 Dim cell As Range ' cell within worksheet range
 Dim n As Integer ' highest row number
 Dim bFound As Boolean ' boolean flag, if duplicate is found
 Dim sFound As String: sFound = "|" ' found duplicates
 Dim s As String ' message string
 Dim s2 As String ' partial message string
' Set Sheet to memory
 Set ws = ThisWorkbook.Sheets("Duplicates")

' loop thru FULLY QUALIFIED REFERENCE
 For Each cell In ws.Range("A2:A7")
 bFound = False: s2 = "" ' start each cell with empty values
 ' Check if first occurrence of this value as duplicate to avoid further searches
 If InStr(sFound, "|" & cell & "|") = 0 Then

 For n = cell.Row + 1 To 7 ' iterate starting point to avoid REDUNDANT SEARCH
 If cell = ws.Range("A" & n).Value Then
 If cell.Row <> n Then ' only other cells, as same cell cannot be a duplicate
 bFound = True ' boolean flag
 ' found duplicates in cell A{n}
 s2 = s2 & vbNewLine & " -> duplicate in A" & n
 End If
 End If
 Next
 End If
 ' notice all found duplicates
 If bFound Then
 ' add value to list of all found duplicate values
 ' (could be easily split to an array for further analyze)
 sFound = sFound & cell & "|"
 s = s & cell.Address & " (value=" & cell & ")" & s2 & vbNewLine & vbNewLine
 End If
 Next
' Messagebox with final result
 MsgBox "Duplicate values are " & sFound & vbNewLine & vbNewLine & s, vbInformation, "Found
duplicates"
End Sub

Depending on your needs, the example can be modified - for instance, the upper limit of n can be the row value of
last cell with data in the range, or the action in case of a True If condition can be edited to extract the duplicate

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Excel® VBA Notes for Professionals 31

value somewhere else. However, the mechanics of the routine would not change.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Excel® VBA Notes for Professionals 32

Chapter 8: User Defined Functions (UDFs)
Section 8.1: Allow full column references without penalty
It's easier to implement some UDFs on the worksheet if full column references can be passed in as parameters.
However, due to the explicit nature of coding, any loop involving these ranges may be processing hundreds of
thousands of cells that are completely empty. This reduces your VBA project (and workbook) to a frozen mess while
unnecessary non-values are processed.

Looping through a worksheet's cells is one of the slowest methods of accomplishing a task but sometimes it is
unavoidable. Cutting the work performed down to what is actually required makes perfect sense.

The solution is to truncate the full column or full row references to the Worksheet.UsedRange property with the
Intersect method. The following sample will loosely replicate a worksheet's native SUMIF function so the
criteria_range will also be resized to suit the sum_range since each value in the sum_range must be accompanied by a
value in the criteria_range.

The Application.Caller for a UDF used on a worksheet is the cell in which it resides. The cell's .Parent property is the
worksheet. This will be used to define the .UsedRange.

In a Module code sheet:

Option Explicit

Function udfMySumIf(rngA As Range, rngB As Range, _
 Optional crit As Variant = "yes")
 Dim c As Long, ttl As Double

 With Application.Caller.Parent
 Set rngA = Intersect(rngA, .UsedRange)
 Set rngB = rngB.Resize(rngA.Rows.Count, rngA.Columns.Count)
 End With

 For c = 1 To rngA.Cells.Count
 If IsNumeric(rngA.Cells(c).Value2) Then
 If LCase(rngB(c).Value2) = LCase(crit) Then
 ttl = ttl + rngA.Cells(c).Value2
 End If
 End If
 Next c

 udfMySumIf = ttl

End Function

Syntax:
 =udfMySumIf(*sum_range*, *criteria_range*, [*criteria*])

https://msdn.microsoft.com/en-us/library/office/ff840732.aspx
https://msdn.microsoft.com/en-us/library/office/aa195772.aspx
https://msdn.microsoft.com/en-us/library/office/ff193687.aspx
https://msdn.microsoft.com/en-us/library/office/aa224980.aspx
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Excel® VBA Notes for Professionals 33

While this is a fairly simplistic example, it adequately demonstrates passing in two full column references (1,048,576
rows each) but only processing 15 rows of data and criteria.

Linked official MSDN documentation of individual methods and properties courtesy of Microsoft™.

Section 8.2: Count Unique values in Range
Function countUnique(r As range) As Long
 'Application.Volatile False ' optional
 Set r = Intersect(r, r.Worksheet.UsedRange) ' optional if you pass entire rows or columns to the
function
 Dim c As New Collection, v
 On Error Resume Next ' to ignore the Run-time error 457: "This key is already associated with
an element of this collection".
 For Each v In r.Value ' remove .Value for ranges with more than one Areas
 c.Add 0, v & ""
 Next
 c.Remove "" ' optional to exclude blank values from the count
 countUnique = c.Count
End Function

Collections

Section 8.3: UDF - Hello World
Open Excel1.
Open the Visual Basic Editor (see Opening the Visual Basic Editor)2.
Add a new module by clicking Insert --> Module :3.

http://i.stack.imgur.com/sgMr4.png
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Excel® VBA Notes for Professionals 34

Copy and Paste the following code in the new module :4.

Public Function Hello() As String
'Note: the output of the function is simply the function's name
Hello = "Hello, World !"
End Function

To obtain :

Go back to your workbook and type "=Hello()" into a cell to see the "Hello World".5.

http://i.stack.imgur.com/0KhKM.png
http://i.stack.imgur.com/1r1E7.png
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Excel® VBA Notes for Professionals 35

http://i.stack.imgur.com/PFQsX.png
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Excel® VBA Notes for Professionals 36

Chapter 9: Conditional formatting using
VBA
Section 9.1: FormatConditions.Add
Syntax:
FormatConditions.Add(Type, Operator, Formula1, Formula2)

Parameters:
Name Required / Optional Data Type

Type Required XlFormatConditionType

Operator Optional Variant

Formula1 Optional Variant

Formula2 Optional Variant

XlFormatConditionType enumaration:
Name Description

xlAboveAverageCondition Above average condition

xlBlanksCondition Blanks condition

xlCellValue Cell value

xlColorScale Color scale

xlDatabar Databar

xlErrorsCondition Errors condition

xlExpression Expression

XlIconSet Icon set

xlNoBlanksCondition No blanks condition

xlNoErrorsCondition No errors condition

xlTextString Text string

xlTimePeriod Time period

xlTop10 Top 10 values

xlUniqueValues Unique values

Formatting by cell value:
With Range("A1").FormatConditions.Add(xlCellValue, xlGreater, "=100")
 With .Font
 .Bold = True
 .ColorIndex = 3
 End With
End With

Operators:
Name

xlBetween

xlEqual

xlGreater

xlGreaterEqual

xlLess

xlLessEqual

xlNotBetween

xlNotEqual

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Excel® VBA Notes for Professionals 37

If Type is xlExpression, the Operator argument is ignored.

Formatting by text contains:
With Range("a1:a10").FormatConditions.Add(xlTextString, TextOperator:=xlContains, String:="egg")
 With .Font
 .Bold = True
 .ColorIndex = 3
 End With
End With

Operators:
Name Description

xlBeginsWith Begins with a specified value.

xlContains Contains a specified value.

xlDoesNotContain Does not contain the specified value.

xlEndsWith Endswith the specified value

Formatting by time period
With Range("a1:a10").FormatConditions.Add(xlTimePeriod, DateOperator:=xlToday)
 With .Font
 .Bold = True
 .ColorIndex = 3
 End With
End With

Operators:
Name

xlYesterday

xlTomorrow

xlLast7Days

xlLastWeek

xlThisWeek

xlNextWeek

xlLastMonth

xlThisMonth

xlNextMonth

Section 9.2: Remove conditional format
Remove all conditional format in range:
Range("A1:A10").FormatConditions.Delete

Remove all conditional format in worksheet:
Cells.FormatConditions.Delete

Section 9.3: FormatConditions.AddUniqueValues
Highlighting Duplicate Values
With Range("E1:E100").FormatConditions.AddUniqueValues
 .DupeUnique = xlDuplicate
 With .Font
 .Bold = True

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Excel® VBA Notes for Professionals 38

 .ColorIndex = 3
 End With
End With

Highlighting Unique Values
With Range("E1:E100").FormatConditions.AddUniqueValues
 With .Font
 .Bold = True
 .ColorIndex = 3
 End With
End With

Section 9.4: FormatConditions.AddTop10
Highlighting Top 5 Values
With Range("E1:E100").FormatConditions.AddTop10
 .TopBottom = xlTop10Top
 .Rank = 5
 .Percent = False
 With .Font
 .Bold = True
 .ColorIndex = 3
 End With
End With

Section 9.5: FormatConditions.AddAboveAverage
With Range("E1:E100").FormatConditions.AddAboveAverage
 .AboveBelow = xlAboveAverage
 With .Font
 .Bold = True
 .ColorIndex = 3
 End With
End With

Operators:
Name Description

XlAboveAverage Above average

XlAboveStdDev Above standard deviation

XlBelowAverage Below average

XlBelowStdDev Below standard deviation

XlEqualAboveAverage Equal above average

XlEqualBelowAverage Equal below average

Section 9.6: FormatConditions.AddIconSetCondition

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Excel® VBA Notes for Professionals 39

Range("a1:a10").FormatConditions.AddIconSetCondition
With Selection.FormatConditions(1)
 .ReverseOrder = False
 .ShowIconOnly = False
 .IconSet = ActiveWorkbook.IconSets(xl3Arrows)
End With

With Selection.FormatConditions(1).IconCriteria(2)
 .Type = xlConditionValuePercent
 .Value = 33
 .Operator = 7
End With

With Selection.FormatConditions(1).IconCriteria(3)
 .Type = xlConditionValuePercent
 .Value = 67
 .Operator = 7
End With

IconSet:
Name

xl3Arrows

xl3ArrowsGray

xl3Flags

xl3Signs

xl3Stars

xl3Symbols

xl3Symbols2

xl3TrafficLights1

xl3TrafficLights2

xl3Triangles

xl4Arrows

xl4ArrowsGray

xl4CRV

xl4RedToBlack

xl4TrafficLights

xl5Arrows

https://i.stack.imgur.com/HYy5B.png
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Excel® VBA Notes for Professionals 40

xl5ArrowsGray

xl5Boxes

xl5CRV

xl5Quarters

Type:
Name

xlConditionValuePercent

xlConditionValueNumber

xlConditionValuePercentile

xlConditionValueFormula

Operator:
Name Value

xlGreater 5

xlGreaterEqual 7

Value:

Returns or sets the threshold value for an icon in a conditional format.

https://i.stack.imgur.com/Fgkr1.png
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Excel® VBA Notes for Professionals 41

Chapter 10: Workbooks
Section 10.1: When To Use ActiveWorkbook and ThisWorkbook
It's a VBA Best Practice to always specify which workbook your VBA code refers. If this specification is omitted, then
VBA assumes the code is directed at the currently active workbook (ActiveWorkbook).

'--- the currently active workbook (and worksheet) is implied
Range("A1").value = 3.1415
Cells(1, 1).value = 3.1415

However, when several workbooks are open at the same time -- particularly and especially when VBA code is
running from an Excel Add-In -- references to the ActiveWorkbook may be confused or misdirected. For example, an
add-in with a UDF that checks the time of day and compares it to a value stored on one of the add-in's worksheets
(that are typically not readily visible to the user) will have to explicitly identify which workbook is being referenced.
In our example, our open (and active) workbook has a formula in cell A1 =EarlyOrLate() and does NOT have any
VBA written for that active workbook. In our add-in, we have the following User Defined Function (UDF):

Public Function EarlyOrLate() As String
 If Hour(Now) > ThisWorkbook.Sheets("WatchTime").Range("A1") Then
 EarlyOrLate = "It's Late!"
 Else
 EarlyOrLate = "It's Early!"
 End If
End Function

The code for the UDF is written and stored in the installed Excel add-in. It uses data stored on a worksheet in the
add-in called "WatchTime". If the UDF had used ActiveWorkbook instead of ThisWorkbook, then it would never be
able to guarantee which workbook was intended.

Section 10.2: Changing The Default Number of Worksheets In
A New Workbook
The "factory default" number of worksheets created in a new Excel workbook is generally set to three. Your VBA
code can explicitly set the number of worksheets in a new workbook.

'--- save the current Excel global setting
With Application
 Dim oldSheetsCount As Integer
 oldSheetsCount = .SheetsInNewWorkbook
 Dim myNewWB As Workbook
 .SheetsInNewWorkbook = 1
 Set myNewWB = .Workbooks.Add
 '--- restore the previous setting
 .SheetsInNewWorkbook = oldsheetcount
End With

Section 10.3: Application Workbooks
In many Excel applications, the VBA code takes actions directed at the workbook in which it's contained. You save
that workbook with a ".xlsm" extension and the VBA macros only focus on the worksheets and data within.
However, there are often times when you need to combine or merge data from other workbooks, or write some of
your data to a separate workbook. Opening, closing, saving, creating, and deleting other workbooks is a common
need for many VBA applications.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Excel® VBA Notes for Professionals 42

At any time in the VBA Editor, you can view and access any and all workbooks currently open by that instance of
Excel by using the Workbooks property of the Application object. The MSDN Documentation explains it with
references.

Section 10.4: Opening A (New) Workbook, Even If It's Already
Open
If you want to access a workbook that's already open, then getting the assignment from the Workbooks collection is
straightforward:

dim myWB as Workbook
Set myWB = Workbooks("UsuallyFullPathnameOfWorkbook.xlsx")

If you want to create a new workbook, then use the Workbooks collection object to Add a new entry.

Dim myNewWB as Workbook
Set myNewWB = Workbooks.Add

There are times when you may not or (or care) if the workbook you need is open already or not, or possible does
not exist. The example function shows how to always return a valid workbook object.

Option Explicit
Function GetWorkbook(ByVal wbFilename As String) As Workbook
 '--- returns a workbook object for the given filename, including checks
 ' for when the workbook is already open, exists but not open, or
 ' does not yet exist (and must be created)
 ' *** wbFilename must be a fully specified pathname
 Dim folderFile As String
 Dim returnedWB As Workbook

 '--- check if the file exists in the directory location
 folderFile = File(wbFilename)
 If folderFile = "" Then
 '--- the workbook doesn't exist, so create it
 Dim pos1 As Integer
 Dim fileExt As String
 Dim fileFormatNum As Long
 '--- in order to save the workbook correctly, we need to infer which workbook
 ' type the user intended from the file extension
 pos1 = InStrRev(sFullName, ".", , vbTextCompare)
 fileExt = Right(sFullName, Len(sFullName) - pos1)
 Select Case fileExt
 Case "xlsx"
 fileFormatNum = 51
 Case "xlsm"
 fileFormatNum = 52
 Case "xls"
 fileFormatNum = 56
 Case "xlsb"
 fileFormatNum = 50
 Case Else
 Err.Raise vbObjectError + 1000, "GetWorkbook function", _
 "The file type you've requested (file extension) is not recognized. " & _
 "Please use a known extension: xlsx, xlsm, xls, or xlsb."
 End Select
 Set returnedWB = Workbooks.Add
 Application.DisplayAlerts = False
 returnedWB.SaveAs filename:=wbFilename, FileFormat:=fileFormatNum

https://msdn.microsoft.com/en-us/library/office/ff820765.aspx
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Excel® VBA Notes for Professionals 43

 Application.DisplayAlerts = True
 Set GetWorkbook = returnedWB
 Else
 '--- the workbook exists in the directory, so check to see if
 ' it's already open or not
 On Error Resume Next
 Set returnedWB = Workbooks(sFile)
 If returnedWB Is Nothing Then
 Set returnedWB = Workbooks.Open(sFullName)
 End If
 End If
End Function

Section 10.5: Saving A Workbook Without Asking The User
Often saving new data in an existing workbook using VBA will cause a pop-up question noting that the file already
exists.

To prevent this pop-up question, you have to suppress these types of alerts.

Application.DisplayAlerts = False 'disable user prompt to overwrite file
myWB.SaveAs FileName:="NewOrExistingFilename.xlsx"
Application.DisplayAlerts = True 're-enable user prompt to overwrite file

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Excel® VBA Notes for Professionals 44

Chapter 11: Working with Excel Tables in
VBA
This topic is about working with tables in VBA, and assumes knowledge of Excel Tables. In VBA, or rather the Excel
Object Model, tables are known as ListObjects. The most frequently used properties of a ListObject are ListRow(s),
ListColumn(s), DataBodyRange, Range and HeaderRowRange.

Section 11.1: Instantiating a ListObject
Dim lo as ListObject
Dim MyRange as Range

Set lo = Sheet1.ListObjects(1)

'or

Set lo = Sheet1.ListObjects("Table1")

'or

Set lo = MyRange.ListObject

Section 11.2: Working with ListRows / ListColumns
Dim lo as ListObject
Dim lr as ListRow
Dim lc as ListColumn

Set lr = lo.ListRows.Add
Set lr = lo.ListRows(5)

For Each lr in lo.ListRows
 lr.Range.ClearContents
 lr.Range(1, lo.ListColumns("Some Column").Index).Value = 8
Next

Set lc = lo.ListColumns.Add
Set lc = lo.ListColumns(4)
Set lc = lo.ListColumns("Header 3")

For Each lc in lo.ListColumns
 lc.DataBodyRange.ClearContents 'DataBodyRange excludes the header row
 lc.Range(1,1).Value = "New Header Name" 'Range includes the header row
Next

Section 11.3: Converting an Excel Table to a normal range
Dim lo as ListObject

Set lo = Sheet1.ListObjects("Table1")
lo.Unlist

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Excel® VBA Notes for Professionals 45

Chapter 12: Loop through all Sheets in
Active Workbook
Section 12.1: Retrieve all Worksheets Names in Active
Workbook
Option Explicit

Sub LoopAllSheets()

Dim sht As Excel.Worksheet
' declare an array of type String without committing to maximum number of members
Dim sht_Name() As String
Dim i As Integer

' get the number of worksheets in Active Workbook , and put it as the maximum number of members in
the array
ReDim sht_Name(1 To ActiveWorkbook.Worksheets.count)

i = 1

' loop through all worksheets in Active Workbook
For Each sht In ActiveWorkbook.Worksheets
 sht_Name(i) = sht.Name ' get the name of each worksheet and save it in the array
 i = i + 1
Next sht

End Sub

Section 12.2: Loop Through all Sheets in all Files in a Folder
 Sub Theloopofloops()

 Dim wbk As Workbook
 Dim Filename As String
 Dim path As String
 Dim rCell As Range
 Dim rRng As Range
 Dim wsO As Worksheet
 Dim sheet As Worksheet

 path = "pathtofile(s)" & "\"
 Filename = Dir(path & "*.xl??")
 Set wsO = ThisWorkbook.Sheets("Sheet1") 'included in case you need to differentiate_
 between workbooks i.e currently opened workbook vs workbook containing code

 Do While Len(Filename) > 0
 DoEvents
 Set wbk = Workbooks.Open(path & Filename, True, True)
 For Each sheet In ActiveWorkbook.Worksheets 'this needs to be adjusted for specifiying
sheets. Repeat loop for each sheet so thats on a per sheet basis
 Set rRng = sheet.Range("a1:a1000") 'OBV needs to be changed
 For Each rCell In rRng.Cells
 If rCell <> "" And rCell.Value <> vbNullString And rCell.Value <> 0 Then

 'code that does stuff

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Excel® VBA Notes for Professionals 46

 End If
 Next rCell
 Next sheet
 wbk.Close False
 Filename = Dir
 Loop
 End Sub

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Excel® VBA Notes for Professionals 47

Chapter 13: Use Worksheet object and not
Sheet object
Plenty of VBA users consider Worksheets and Sheets objects synonyms. They are not.

Sheets object consists of both Worksheets and Charts. Thus, if we have charts in our Excel Workbook, we should be
careful, not to use Sheets and Worksheets as synonyms.

Section 13.1: Print the name of the first object

Option Explicit

Sub CheckWorksheetsDiagram()

 Debug.Print Worksheets(1).Name
 Debug.Print Charts(1).Name
 Debug.Print Sheets(1).Name

End Sub

The result:

Sheet1
Chart1
Chart1

https://i.stack.imgur.com/x3VBw.png
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Excel® VBA Notes for Professionals 48

Chapter 14: Methods for Finding the Last
Used Row or Column in a Worksheet
Section 14.1: Find the Last Non-Empty Cell in a Column
In this example, we will look at a method for returning the last non-empty row in a column for a data set.

This method will work regardless of empty regions within the data set.

However caution should be used if merged cells are involved, as the End method will be "stopped" against a merged
region, returning the first cell of the merged region.

In addition non-empty cells in hidden rows will not be taken into account.

Sub FindingLastRow()
 Dim wS As Worksheet, LastRow As Long
 Set wS = ThisWorkbook.Worksheets("Sheet1")

 'Here we look in Column A
 LastRow = wS.Cells(wS.Rows.Count, "A").End(xlUp).Row
 Debug.Print LastRow
End Sub

To address the limitations indicated above, the line:
LastRow = wS.Cells(wS.Rows.Count, "A").End(xlUp).Row

may be replaced with:

for last used row of "Sheet1":1.
LastRow = wS.UsedRange.Row - 1 + wS.UsedRange.Rows.Count.

for last non-empty cell of Column "A" in "Sheet1":2.

 Dim i As Long
 For i = LastRow To 1 Step -1
 If Not (IsEmpty(Cells(i, 1))) Then Exit For
 Next i
 LastRow = i

Section 14.2: Find the Last Non-Empty Row in Worksheet
Private Sub Get_Last_Used_Row_Index()
 Dim wS As Worksheet

 Set wS = ThisWorkbook.Sheets("Sheet1")
 Debug.Print LastRow_1(wS)
 Debug.Print LastRow_0(wS)
End Sub

You can choose between 2 options, regarding if you want to know if there is no data in the worksheet :

NO : Use LastRow_1 : You can use it directly within wS.Cells(LastRow_1(wS),...)
YES : Use LastRow_0 : You need to test if the result you get from the function is 0 or not before using it

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Excel® VBA Notes for Professionals 49

Public Function LastRow_1(wS As Worksheet) As Double
 With wS
 If Application.WorksheetFunction.CountA(.Cells) <> 0 Then
 LastRow_1 = .Cells.Find(What:="*", _
 After:=.Range("A1"), _
 Lookat:=xlPart, _
 LookIn:=xlFormulas, _
 SearchOrder:=xlByRows, _
 SearchDirection:=xlPrevious, _
 MatchCase:=False).Row
 Else
 LastRow_1 = 1
 End If
 End With
End Function

Public Function LastRow_0(wS As Worksheet) As Double
 On Error Resume Next
 LastRow_0 = wS.Cells.Find(What:="*", _
 After:=ws.Range("A1"), _
 Lookat:=xlPart, _
 LookIn:=xlFormulas, _
 SearchOrder:=xlByRows, _
 SearchDirection:=xlPrevious, _
 MatchCase:=False).Row
End Function

Section 14.3: Find the Last Non-Empty Column in Worksheet
Private Sub Get_Last_Used_Row_Index()
 Dim wS As Worksheet

 Set wS = ThisWorkbook.Sheets("Sheet1")
 Debug.Print LastCol_1(wS)
 Debug.Print LastCol_0(wS)
End Sub

You can choose between 2 options, regarding if you want to know if there is no data in the worksheet :

NO : Use LastCol_1 : You can use it directly within wS.Cells(...,LastCol_1(wS))
YES : Use LastCol_0 : You need to test if the result you get from the function is 0 or not before using it

Public Function LastCol_1(wS As Worksheet) As Double
 With wS
 If Application.WorksheetFunction.CountA(.Cells) <> 0 Then
 LastCol_1 = .Cells.Find(What:="*", _
 After:=.Range("A1"), _
 Lookat:=xlPart, _
 LookIn:=xlFormulas, _
 SearchOrder:=xlByColumns, _
 SearchDirection:=xlPrevious, _
 MatchCase:=False).Column
 Else
 LastCol_1 = 1
 End If
 End With
End Function

The Err object's properties are automatically reset to zero upon function exit.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Excel® VBA Notes for Professionals 50

Public Function LastCol_0(wS As Worksheet) As Double
 On Error Resume Next
 LastCol_0 = wS.Cells.Find(What:="*", _
 After:=ws.Range("A1"), _
 Lookat:=xlPart, _
 LookIn:=xlFormulas, _
 SearchOrder:=xlByColumns, _
 SearchDirection:=xlPrevious, _
 MatchCase:=False).Column
End Function

Section 14.4: Find the Last Non-Empty Cell in a Row
In this example, we will look at a method for returning the last non-empty column in a row.

This method will work regardless of empty regions within the data set.

However caution should be used if merged cells are involved, as the End method will be "stopped" against a merged
region, returning the first cell of the merged region.

In addition non-empty cells in hidden columns will not be taken into account.

Sub FindingLastCol()
 Dim wS As Worksheet, LastCol As Long
 Set wS = ThisWorkbook.Worksheets("Sheet1")

 'Here we look in Row 1
 LastCol = wS.Cells(1, wS.Columns.Count).End(xlToLeft).Column
 Debug.Print LastCol
End Sub

Section 14.5: Get the row of the last cell in a range
'if only one area (not multiple areas):
With Range("A3:D20")
 Debug.Print .Cells(.Cells.CountLarge).Row
 Debug.Print .Item(.Cells.CountLarge).Row 'using .item is also possible
End With 'Debug prints: 20

'with multiple areas (also works if only one area):
Dim rngArea As Range, LastRow As Long
With Range("A3:D20, E5:I50, H20:R35")
 For Each rngArea In .Areas
 If rngArea(rngArea.Cells.CountLarge).Row > LastRow Then
 LastRow = rngArea(rngArea.Cells.CountLarge).Row
 End If
 Next
 Debug.Print LastRow 'Debug prints: 50
End With

Section 14.6: Find Last Row Using Named Range
In case you have a Named Range in your Sheet, and you want to dynamically get the last row of that Dynamic
Named Range. Also covers cases where the Named Range doesn't start from the first Row.

Sub FindingLastRow()

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Excel® VBA Notes for Professionals 51

Dim sht As Worksheet
Dim LastRow As Long
Dim FirstRow As Long

Set sht = ThisWorkbook.Worksheets("form")

'Using Named Range "MyNameRange"
FirstRow = sht.Range("MyNameRange").Row

' in case "MyNameRange" doesn't start at Row 1
LastRow = sht.Range("MyNameRange").Rows.count + FirstRow - 1

End Sub

Update:
A potential loophole was pointed out by @Jeeped for a a named range with non-contiguous rows as it generates
unexpected result. To addresses that issue, the code is revised as below.
Asumptions: targes sheet = form, named range = MyNameRange

Sub FindingLastRow()
 Dim rw As Range, rwMax As Long
 For Each rw In Sheets("form").Range("MyNameRange").Rows
 If rw.Row > rwMax Then rwMax = rw.Row
 Next
 MsgBox "Last row of 'MyNameRange' under Sheets 'form': " & rwMax
End Sub

Section 14.7: Last cell in Range.CurrentRegion
Range.CurrentRegion is a rectangular range area surrounded by empty cells. Blank cells with formulas such as =""
or ' are not considered blank (even by the ISBLANK Excel function).

Dim rng As Range, lastCell As Range
Set rng = Range("C3").CurrentRegion ' or Set rng = Sheet1.UsedRange.CurrentRegion
Set lastCell = rng(rng.Rows.Count, rng.Columns.Count)

Section 14.8: Find the Last Non-Empty Cell in Worksheet -
Performance (Array)

The first function, using an array, is much faster
If called without the optional parameter, will default to .ThisWorkbook.ActiveSheet
If the range is empty will returns Cell(1, 1) as default, instead of Nothing

Speed:

GetMaxCell (Array): Duration: 0.0000790063 seconds
GetMaxCell (Find): Duration: 0.0002903480 seconds

.Measured with MicroTimer

Public Function GetLastCell(Optional ByVal ws As Worksheet = Nothing) As Range
 Dim uRng As Range, uArr As Variant, r As Long, c As Long
 Dim ubR As Long, ubC As Long, lRow As Long

https://msdn.microsoft.com/en-us/library/office/ff196678.aspx
https://msdn.microsoft.com/en-us/library/office/ff196678.aspx
https://msdn.microsoft.com/en-us/library/office/ff196678.aspx
https://support.microsoft.com/en-us/kb/823838
https://msdn.microsoft.com/en-us/library/office/ff700515(v=office.14).aspx#Anchor_5
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Excel® VBA Notes for Professionals 52

 If ws Is Nothing Then Set ws = Application.ThisWorkbook.ActiveSheet
 Set uRng = ws.UsedRange
 uArr = uRng
 If IsEmpty(uArr) Then
 Set GetLastCell = ws.Cells(1, 1): Exit Function
 End If
 If Not IsArray(uArr) Then
 Set GetLastCell = ws.Cells(uRng.Row, uRng.Column): Exit Function
 End If
 ubR = UBound(uArr, 1): ubC = UBound(uArr, 2)
 For r = ubR To 1 Step -1 '--- last row
 For c = ubC To 1 Step -1
 If Not IsError(uArr(r, c)) Then
 If Len(Trim$(uArr(r, c))) > 0 Then
 lRow = r: Exit For
 End If
 End If
 Next
 If lRow > 0 Then Exit For
 Next
 If lRow = 0 Then lRow = ubR
 For c = ubC To 1 Step -1 '--- last col
 For r = lRow To 1 Step -1
 If Not IsError(uArr(r, c)) Then
 If Len(Trim$(uArr(r, c))) > 0 Then
 Set GetLastCell = ws.Cells(lRow + uRng.Row - 1, c + uRng.Column - 1)
 Exit Function
 End If
 End If
 Next
 Next
End Function

'Returns last cell (max row & max col) using Find

Public Function GetMaxCell2(Optional ByRef rng As Range = Nothing) As Range 'Using Find

 Const NONEMPTY As String = "*"

 Dim lRow As Range, lCol As Range

 If rng Is Nothing Then Set rng = Application.ThisWorkbook.ActiveSheet.UsedRange

 If WorksheetFunction.CountA(rng) = 0 Then
 Set GetMaxCell2 = rng.Parent.Cells(1, 1)
 Else
 With rng
 Set lRow = .Cells.Find(What:=NONEMPTY, LookIn:=xlFormulas, _
 After:=.Cells(1, 1), _
 SearchDirection:=xlPrevious, _
 SearchOrder:=xlByRows)
 If Not lRow Is Nothing Then
 Set lCol = .Cells.Find(What:=NONEMPTY, LookIn:=xlFormulas, _
 After:=.Cells(1, 1), _
 SearchDirection:=xlPrevious, _
 SearchOrder:=xlByColumns)

 Set GetMaxCell2 = .Parent.Cells(lRow.Row, lCol.Column)
 End If
 End With
 End If

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Excel® VBA Notes for Professionals 53

End Function

.

MicroTimer:

Private Declare PtrSafe Function getFrequency Lib "Kernel32" Alias "QueryPerformanceFrequency"
(cyFrequency As Currency) As Long
Private Declare PtrSafe Function getTickCount Lib "Kernel32" Alias "QueryPerformanceCounter"
(cyTickCount As Currency) As Long

Function MicroTimer() As Double
 Dim cyTicks1 As Currency
 Static cyFrequency As Currency

 MicroTimer = 0
 If cyFrequency = 0 Then getFrequency cyFrequency 'Get frequency
 getTickCount cyTicks1 'Get ticks
 If cyFrequency Then MicroTimer = cyTicks1 / cyFrequency 'Returns Seconds
End Function

https://msdn.microsoft.com/en-us/library/office/ff700515(v=office.14).aspx#Anchor_5
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Excel® VBA Notes for Professionals 54

Chapter 15: Creating a drop-down menu in
the Active Worksheet with a Combo Box
This is a simple example demonstrating how to create a drop down menu in the Active Sheet of your workbook by
inserting a Combo Box Activex object in the sheet. You'll be able to insert one of five Jimi Hendrix songs in any
activated cell of the sheet and be able to clear it, accordingly.

Section 15.1: Example 2: Options Not Included
This example is used in specifying options that might not be included in a database of available housing and its
attendant amenities.

It builds on the previous example, with some differences:

Two procedures are no longer necessary for a single combo box, done by combining the code into a single1.
procedure.
The use of the LinkedCell property to allow for the correct input of the user selection every time2.
The inclusion of a backup feature for ensuring the active cell is in the correct column and an error prevention3.
code, based on previous experience, where numeric values would formatted as strings when populated to
the active cell.

Private Sub cboNotIncl_Change()

Dim n As Long
Dim notincl_array(1 To 9) As String

n = myTarget.Row

 If n >= 3 And n < 10000 Then

 If myTarget.Address = "G" & n Then

 'set up the array elements for the not included services
 notincl_array(1) = "Central Air"
 notincl_array(2) = "Hot Water"
 notincl_array(3) = "Heater Rental"
 notincl_array(4) = "Utilities"
 notincl_array(5) = "Parking"
 notincl_array(6) = "Internet"
 notincl_array(7) = "Hydro"
 notincl_array(8) = "Hydro/Hot Water/Heater Rental"
 notincl_array(9) = "Hydro and Utilities"

 cboNotIncl.List = notincl_array()

 Else

 Exit Sub

 End If

 With cboNotIncl

 'make sure the combo box moves to the target cell
 .Left = myTarget.Left
 .Top = myTarget.Top

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Excel® VBA Notes for Professionals 55

 'adjust the size of the cell to fit the combo box
 myTarget.ColumnWidth = .Width * 0.18

 'make it look nice by editing some of the font attributes
 .Font.Size = 11
 .Font.Bold = False

 'populate the cell with the user choice, with a backup guarantee that it's in column G

 If myTarget.Address = "G" & n Then

 .LinkedCell = myTarget.Address

 'prevent an error where a numerical value is formatted as text
 myTarget.EntireColumn.TextToColumns

 End If

 End With

 End If 'ensure that the active cell is only between rows 3 and 1000

End Sub

The above macro is initiated every time a cell is activated with the SelectionChange event in the worksheet module:

Public myTarget As Range

Private Sub Worksheet_SelectionChange(ByVal Target As Range)

 Set myTarget = Target

 'switch for Not Included
 If Target.Column = 7 And Target.Cells.Count = 1 Then

 Application.Run "Module1.cboNotIncl_Change"

 End If

End Sub

Section 15.2: Jimi Hendrix Menu
In general, the code is placed in the module of a sheet.

This is the Worksheet_SelectionChange event, which fires each time a different cell is selected in the active sheet.
You can select "Worksheet" from the first drop-down menu above the code window, and "Selection_Change" from
the drop down menu next to it. In this case, every time you activate a cell, the code is redirected to the Combo Box's
code.

Private Sub Worksheet_SelectionChange(ByVal Target As Range)

 ComboBox1_Change

End Sub

Here, the routine dedicated to the ComboBox is coded to the Change event by default. In it, there is a fixed array,
populated with all the options. Not the CLEAR option in the last position, which will be used to clear the contents of
a cell. The array then is handed to to the Combo Box and passed to the routine that does the work.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Excel® VBA Notes for Professionals 56

Private Sub ComboBox1_Change()

Dim myarray(0 To 5)
 myarray(0) = "Hey Joe"
 myarray(1) = "Little Wing"
 myarray(2) = "Voodoo Child"
 myarray(3) = "Purple Haze"
 myarray(4) = "The Wind Cries Mary"
 myarray(5) = "CLEAR"

 With ComboBox1
 .List = myarray()
 End With

 FillACell myarray()

End Sub

The array is passed to the routine that fills the cells with the song name or null value to empty them. First, an
integer variable is given the value of the position of the choice that the user makes. Then, the Combo Box is moved
to the TOP LEFT corner of the cell the user activates and its dimensions adjusted to make the experience more fluid.
The active cell is then assigned the value in the position in the integer variable, which tracks the user choice. In case
the user selects CLEAR from the options, the cell is emptied.

The entire routine repeats for each selected cell.

Sub FillACell(MyArray As Variant)

Dim n As Integer

n = ComboBox1.ListIndex

ComboBox1.Left = ActiveCell.Left
ComboBox1.Top = ActiveCell.Top
Columns(ActiveCell.Column).ColumnWidth = ComboBox1.Width * 0.18

ActiveCell = MyArray(n)

If ComboBox1 = "CLEAR" Then
 Range(ActiveCell.Address) = ""
End If

End Sub

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Excel® VBA Notes for Professionals 57

Chapter 16: File System Object
Section 16.1: File, folder, drive exists
File exists:
Sub FileExists()
 Dim fso as Scripting.FileSystemObject
 Set fso = CreateObject("Scripting.FileSystemObject")
 If fso.FileExists("D:\test.txt") = True Then
 MsgBox "The file is exists."
 Else
 MsgBox "The file isn't exists."
 End If
End Sub

Folder exists:
Sub FolderExists()
 Dim fso as Scripting.FileSystemObject
 Set fso = CreateObject("Scripting.FileSystemObject")
 If fso.FolderExists("D:\testFolder") = True Then
 MsgBox "The folder is exists."
 Else
 MsgBox "The folder isn't exists."
 End If
End Sub

Drive exists:
Sub DriveExists()
 Dim fso as Scripting.FileSystemObject
 Set fso = CreateObject("Scripting.FileSystemObject")
 If fso.DriveExists("D:\") = True Then
 MsgBox "The drive is exists."
 Else
 MsgBox "The drive isn't exists."
 End If
End Sub

Section 16.2: Basic file operations
Copy:
Sub CopyFile()
 Dim fso as Scripting.FileSystemObject
 Set fso = CreateObject("Scripting.FileSystemObject")
 fso.CopyFile "c:\Documents and Settings\Makro.txt", "c:\Documents and Settings\Macros\"
End Sub

Move:
Sub MoveFile()
 Dim fso as Scripting.FileSystemObject
 Set fso = CreateObject("Scripting.FileSystemObject")
 fso.MoveFile "c:*.txt", "c:\Documents and Settings\"
End Sub

Delete:
Sub DeleteFile()
 Dim fso
 Set fso = CreateObject("Scripting.FileSystemObject")
 fso.DeleteFile "c:\Documents and Settings\Macros\Makro.txt"

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Excel® VBA Notes for Professionals 58

End Sub

Section 16.3: Basic folder operations
Create:
Sub CreateFolder()
 Dim fso as Scripting.FileSystemObject
 Set fso = CreateObject("Scripting.FileSystemObject")
 fso.CreateFolder "c:\Documents and Settings\NewFolder"
End Sub

Copy:
Sub CopyFolder()
 Dim fso as Scripting.FileSystemObject
 Set fso = CreateObject("Scripting.FileSystemObject")
 fso.CopyFolder "C:\Documents and Settings\NewFolder", "C:\"
End Sub

Move:
Sub MoveFolder()
 Dim fso as Scripting.FileSystemObject
 Set fso = CreateObject("Scripting.FileSystemObject")
 fso.MoveFolder "C:\Documents and Settings\NewFolder", "C:\"
End Sub

Delete:
Sub DeleteFolder()
 Dim fso as Scripting.FileSystemObject
 Set fso = CreateObject("Scripting.FileSystemObject")
 fso.DeleteFolder "C:\Documents and Settings\NewFolder"
End Sub

Section 16.4: Other operations
Get file name:
Sub GetFileName()
 Dim fso as Scripting.FileSystemObject
 Set fso = CreateObject("Scripting.FileSystemObject")
 MsgBox fso.GetFileName("c:\Documents and Settings\Makro.txt")
End Sub

Result: Makro.txt

Get base name:
Sub GetBaseName()
 Dim fso as Scripting.FileSystemObject
 Set fso = CreateObject("Scripting.FileSystemObject")
 MsgBox fso.GetBaseName("c:\Documents and Settings\Makro.txt")
End Sub

Result: Makro

Get extension name:
Sub GetExtensionName()
 Dim fso as Scripting.FileSystemObject
 Set fso = CreateObject("Scripting.FileSystemObject")
 MsgBox fso.GetExtensionName("c:\Documents and Settings\Makro.txt")

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Excel® VBA Notes for Professionals 59

End Sub

Result: txt

Get drive name:
Sub GetDriveName()
 Dim fso as Scripting.FileSystemObject
 Set fso = CreateObject("Scripting.FileSystemObject")
 MsgBox fso.GetDriveName("c:\Documents and Settings\Makro.txt")
End Sub

Result: c:

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Excel® VBA Notes for Professionals 60

Chapter 17: Pivot Tables
Section 17.1: Adding Fields to a Pivot Table
Two important things to note when adding fields to a Pivot Table are Orientation and Position. Sometimes a
developer may assume where a field is placed, so it's always clearer to explicitly define these parameters. These
actions only affect the given Pivot Table, not the Pivot Cache.

Dim thisPivot As PivotTable
Dim ptSheet As Worksheet
Dim ptField As PivotField

Set ptSheet = ThisWorkbook.Sheets("SheetNameWithPivotTable")
Set thisPivot = ptSheet.PivotTables(1)

With thisPivot
 Set ptField = .PivotFields("Gender")
 ptField.Orientation = xlRowField
 ptField.Position = 1
 Set ptField = .PivotFields("LastName")
 ptField.Orientation = xlRowField
 ptField.Position = 2
 Set ptField = .PivotFields("ShirtSize")
 ptField.Orientation = xlColumnField
 ptField.Position = 1
 Set ptField = .AddDataField(.PivotFields("Cost"), "Sum of Cost", xlSum)
 .InGridDropZones = True
 .RowAxisLayout xlTabularRow
End With

Section 17.2: Creating a Pivot Table
One of the most powerful capabilities in Excel is the use of Pivot Tables to sort and analyze data. Using VBA to
create and manipulate the Pivots is easier if you understand the relationship of Pivot Tables to Pivot Caches and
how to reference and use the different parts of the Tables.

At its most basic, your source data is a Range area of data on a Worksheet. This data area MUST identify the data
columns with a header row as the first row in the range. Once the Pivot Table is created, the user may view and
change the source data at any time. However, changes may not be automatically or immediately reflected in the
Pivot Table itself because there is an intermediate data storage structure called the Pivot Cache that is directly
connected to the Pivot Table itself.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Excel® VBA Notes for Professionals 61

If multiple Pivot Tables are needed, based on the same source data, the Pivot Cache may be re-used as the internal
data store for each of the Pivot Tables. This is a good practice because it saves memory and reduces the size of the
Excel file for storage.

http://i.stack.imgur.com/weSrg.png
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Excel® VBA Notes for Professionals 62

As an example, to create a Pivot Table based on the source data shown in the Figures above:

Sub test()
 Dim pt As PivotTable
 Set pt = CreatePivotTable(ThisWorkbook.Sheets("Sheet1").Range("A1:E15"))
End Sub

Function CreatePivotTable(ByRef srcData As Range) As PivotTable
 '--- creates a Pivot Table from the given source data and
 ' assumes that the first row contains valid header data
 ' for the columns
 Dim thisPivot As PivotTable
 Dim dataSheet As Worksheet
 Dim ptSheet As Worksheet
 Dim ptCache As PivotCache

 '--- the Pivot Cache must be created first...
 Set ptCache = ThisWorkbook.PivotCaches.Create(SourceType:=xlDatabase, _
 SourceData:=srcData)
 '--- ... then use the Pivot Cache to create the Table
 Set ptSheet = ThisWorkbook.Sheets.Add
 Set thisPivot = ptCache.CreatePivotTable(TableDestination:=ptSheet.Range("A3"))
 Set CreatePivotTable = thisPivot
End Function

http://i.stack.imgur.com/Lxbln.png
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Excel® VBA Notes for Professionals 63

References MSDN Pivot Table Object

Section 17.3: Pivot Table Ranges
These excellent reference sources provide descriptions and illustrations of the various ranges in Pivot Tables.

References

Referencing Pivot Table Ranges in VBA - from Jon Peltier's Tech Blog
Referencing an Excel Pivot Table Range using VBA - from globaliconnect Excel VBA

Section 17.4: Formatting the Pivot Table Data
This example changes/sets several formats in the data range area (DataBodyRange) of the given Pivot Table. All
formattable parameters in a standard Range are available. Formatting the data only affects the Pivot Table itself, not
the Pivot Cache.

NOTE: the property is named TableStyle2 because the TableStyle property is not a member of the PivotTable's
object properties.

Dim thisPivot As PivotTable
Dim ptSheet As Worksheet
Dim ptField As PivotField

Set ptSheet = ThisWorkbook.Sheets("SheetNameWithPivotTable")
Set thisPivot = ptSheet.PivotTables(1)

With thisPivot
 .DataBodyRange.NumberFormat = "_($* #,##0.00_);_($* (#,##0.00);_($* "-"??_);_(@_)"
 .DataBodyRange.HorizontalAlignment = xlRight
 .ColumnRange.HorizontalAlignment = xlCenter
 .TableStyle2 = "PivotStyleMedium9"
End With

https://msdn.microsoft.com/en-us/library/office/ff837611.aspx
http://peltiertech.com/referencing-pivot-table-ranges-in-vba/
http://www.globaliconnect.com/excel/index.php?option=com_content&view=article&id=154:referencing-an-excel-pivot-table-range-using-vba&catid=79&Itemid=475
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Excel® VBA Notes for Professionals 64

Chapter 18: Binding
Section 18.1: Early Binding vs Late Binding
Binding is the process of assigning an object to an identifier or variable name. Early binding (also known as static
binding) is when an object declared in Excel is of a specific object type, such as a Worksheet or Workbook. Late
binding occurs when general object associations are made, such as the Object and Variant declaration types.

Early binding of references some advantages over late binding.

Early binding is operationally faster than late binding during run-time. Creating the object with late binding in
run-time takes time that early binding accomplishes when the VBA project is initially loaded.
Early binding offers additional functionality through the identification of Key/Item pairs by their ordinal
position.
Depending on code structure, early binding may offer an additional level of type checking and reduce errors.
The VBE's capitalization correction when typing a bound object's properties and methods is active with early
binding but unavailable with late binding.

Note: You must add the appropriate reference to the VBA project through the VBE's Tools → References
command in order to implement early binding.
This library reference is then carried with the project; it does not have to be re-referenced when the VBA
project is distributed and run on another computer.

'Looping through a dictionary that was created with late binding¹
Sub iterateDictionaryLate()
 Dim k As Variant, dict As Object

 Set dict = CreateObject("Scripting.Dictionary")
 dict.comparemode = vbTextCompare 'non-case sensitive compare model

 'populate the dictionary
 dict.Add Key:="Red", Item:="Balloon"
 dict.Add Key:="Green", Item:="Balloon"
 dict.Add Key:="Blue", Item:="Balloon"

 'iterate through the keys
 For Each k In dict.Keys
 Debug.Print k & " - " & dict.Item(k)
 Next k

 dict.Remove "blue" 'remove individual key/item pair by key
 dict.RemoveAll 'remove all remaining key/item pairs

End Sub

'Looping through a dictionary that was created with early binding¹
Sub iterateDictionaryEarly()
 Dim d As Long, k As Variant
 Dim dict As New Scripting.Dictionary

 dict.CompareMode = vbTextCompare 'non-case sensitive compare model

 'populate the dictionary
 dict.Add Key:="Red", Item:="Balloon"
 dict.Add Key:="Green", Item:="Balloon"

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Excel® VBA Notes for Professionals 65

 dict.Add Key:="Blue", Item:="Balloon"
 dict.Add Key:="White", Item:="Balloon"

 'iterate through the keys
 For Each k In dict.Keys
 Debug.Print k & " - " & dict.Item(k)
 Next k

 'iterate through the keys by the count
 For d = 0 To dict.Count - 1
 Debug.Print dict.Keys(d) & " - " & dict.Items(d)
 Next d

 'iterate through the keys by the boundaries of the keys collection
 For d = LBound(dict.Keys) To UBound(dict.Keys)
 Debug.Print dict.Keys(d) & " - " & dict.Items(d)
 Next d

 dict.Remove "blue" 'remove individual key/item pair by key
 dict.Remove dict.Keys(0) 'remove first key/item by index position
 dict.Remove dict.Keys(UBound(dict.Keys)) 'remove last key/item by index position
 dict.RemoveAll 'remove all remaining key/item pairs

End Sub

However, if you are using early binding and the document is run on a system that lacks one of the libraries you
have referenced, you will encounter problems. Not only will the routines that utilize the missing library not function
properly, but the behavior of all code within the document will become erratic. It is likely that none of the
document's code will function on that computer.

This is where late binding is advantageous. When using late binding you do not have to add the reference in the
Tools>References menu. On machines that have the appropriate library, the code will still work. On machines
without that library, the commands that reference the library will not work, but all the other code in your document
will continue to function.

If you are not thoroughly familiar with the library you are referencing, it may be useful to use early binding while
writing the code, then switch to late binding before deployment. That way you can take advantage of the VBE's
IntelliSense and Object Browser during development.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Excel® VBA Notes for Professionals 66

Chapter 19: autofilter ; Uses and best
practices
Autofilter ultimate goal is to provide in the quickest way possible data mining from hundreds or thousands of rows
data in order to get the attention in the items we want to focus on. It can receive parameters such as
"text/values/colors" and they can be stacked among columns. You may connect up to 2 criteria per column based in
logical connectors and sets of rules. Remark: Autofilter works by filtering rows, there is no Autofilter to filter
columns (at least not natively).

Section 19.1: Smartfilter!
Problem situation
Warehouse administrator has a sheet ("Record") where every logistics movement performed by the facility is
stored, he may filter as needed, although, this is very time consuming and he would like to improve the process in
order to calculate inquiries faster, for example: How many "pulp" do we have now (in all racks)? How many pulp do
we have now (in rack #5)? Filters are a great tool but, they are somewhat limited to answer these kind of question in
matter of seconds.

Macro solution:
The coder knows that autofilters are the best, fast and most reliable solution in these kind of scenarios since the
data exists already in the worksheet and the input for them can be obtained easily -in this case, by user input-.
The approach used is to create a sheet called "SmartFilter" where administrator can easily filter multiple data as
needed and calculation will be performed instantly as well.
He uses 2 modules and the Worksheet_Change event for this matter

https://i.stack.imgur.com/cob3v.png
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Excel® VBA Notes for Professionals 67

Code For SmartFilter Worksheet:

Private Sub Worksheet_Change(ByVal Target As Range)
Dim ItemInRange As Range
Const CellsFilters As String = "C2,E2,G2"
 Call ExcelBusy
 For Each ItemInRange In Target
 If Not Intersect(ItemInRange, Range(CellsFilters)) Is Nothing Then Call Inventory_Filter
 Next ItemInRange
 Call ExcelNormal
End Sub

Code for module 1, called "General_Functions"

Sub ExcelNormal()
 With Excel.Application
 .EnableEvents = True
 .Cursor = xlDefault
 .ScreenUpdating = True
 .DisplayAlerts = True
 .StatusBar = False
 .CopyObjectsWithCells = True
 End With
End Sub
Sub ExcelBusy()
 With Excel.Application
 .EnableEvents = False
 .Cursor = xlWait
 .ScreenUpdating = False
 .DisplayAlerts = False
 .StatusBar = False
 .CopyObjectsWithCells = True
 End With
End Sub
Sub Select_Sheet(NameSheet As String, Optional VerifyExistanceOnly As Boolean)
 On Error GoTo Err01Select_Sheet
 Sheets(NameSheet).Visible = True
 If VerifyExistanceOnly = False Then ' 1. If VerifyExistanceOnly = False
 Sheets(NameSheet).Select
 Sheets(NameSheet).AutoFilterMode = False
 Sheets(NameSheet).Cells.EntireRow.Hidden = False
 Sheets(NameSheet).Cells.EntireColumn.Hidden = False
 End If ' 1. If VerifyExistanceOnly = False
 If 1 = 2 Then '99. If error
Err01Select_Sheet:
 MsgBox "Err01Select_Sheet: Sheet " & NameSheet & " doesn't exist!", vbCritical: Call
ExcelNormal: On Error GoTo -1: End
 End If '99. If error
End Sub
Function General_Functions_Find_Title(InSheet As String, TitleToFind As String, Optional InRange As
Range, Optional IsNeededToExist As Boolean, Optional IsWhole As Boolean) As Range
Dim DummyRange As Range
 On Error GoTo Err01General_Functions_Find_Title
 If InRange Is Nothing Then ' 1. If InRange Is Nothing
 Set DummyRange = IIf(IsWhole = True, Sheets(InSheet).Cells.Find(TitleToFind, LookAt:=xlWhole),
Sheets(InSheet).Cells.Find(TitleToFind, LookAt:=xlPart))
 Else ' 1. If InRange Is Nothing
 Set DummyRange = IIf(IsWhole = True, Sheets(InSheet).Range(InRange.Address).Find(TitleToFind,
LookAt:=xlWhole), Sheets(InSheet).Range(InRange.Address).Find(TitleToFind, LookAt:=xlPart))
 End If ' 1. If InRange Is Nothing
 Set General_Functions_Find_Title = DummyRange

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Excel® VBA Notes for Professionals 68

 If 1 = 2 Or DummyRange Is Nothing Then '99. If error
Err01General_Functions_Find_Title:
 If IsNeededToExist = True Then MsgBox "Err01General_Functions_Find_Title: Ttile '" &
TitleToFind & "' was not found in sheet '" & InSheet & "'", vbCritical: Call ExcelNormal: On Error
GoTo -1: End
 End If '99. If error
End Function

Code for module 2, called "Inventory_Handling"

Const TitleDesc As String = "DESCRIPTION"
Const TitleLocation As String = "LOCATION"
Const TitleActn As String = "ACTION"
Const TitleQty As String = "QUANTITY"
Const SheetRecords As String = "Record"
Const SheetSmartFilter As String = "SmartFilter"
Const RowFilter As Long = 2
Const ColDataToPaste As Long = 2
Const RowDataToPaste As Long = 7
Const RangeInResult As String = "K1"
Const RangeOutResult As String = "K2"
Sub Inventory_Filter()
Dim ColDesc As Long: ColDesc = General_Functions_Find_Title(SheetSmartFilter, TitleDesc,
IsNeededToExist:=True, IsWhole:=True).Column
Dim ColLocation As Long: ColLocation = General_Functions_Find_Title(SheetSmartFilter,
TitleLocation, IsNeededToExist:=True, IsWhole:=True).Column
Dim ColActn As Long: ColActn = General_Functions_Find_Title(SheetSmartFilter, TitleActn,
IsNeededToExist:=True, IsWhole:=True).Column
Dim ColQty As Long: ColQty = General_Functions_Find_Title(SheetSmartFilter, TitleQty,
IsNeededToExist:=True, IsWhole:=True).Column
Dim CounterQty As Long
Dim TotalQty As Long
Dim TotalIn As Long
Dim TotalOut As Long
Dim RangeFiltered As Range
 Call Select_Sheet(SheetSmartFilter)
 If Cells(Rows.Count, ColDataToPaste).End(xlUp).Row > RowDataToPaste - 1 Then
Rows(RowDataToPaste & ":" & Cells(Rows.Count, "B").End(xlUp).Row).Delete
 Sheets(SheetRecords).AutoFilterMode = False
 If Cells(RowFilter, ColDesc).Value <> "" Or Cells(RowFilter, ColLocation).Value <> "" Or
Cells(RowFilter, ColActn).Value <> "" Then ' 1. If Cells(RowFilter, ColDesc).Value <> "" Or
Cells(RowFilter, ColLocation).Value <> "" Or Cells(RowFilter, ColActn).Value <> ""
 With Sheets(SheetRecords).UsedRange
 If Sheets(SheetSmartFilter).Cells(RowFilter, ColDesc).Value <> "" Then .AutoFilter
Field:=General_Functions_Find_Title(SheetRecords, TitleDesc, IsNeededToExist:=True,
IsWhole:=True).Column, Criteria1:=Sheets(SheetSmartFilter).Cells(RowFilter, ColDesc).Value
 If Sheets(SheetSmartFilter).Cells(RowFilter, ColLocation).Value <> "" Then .AutoFilter
Field:=General_Functions_Find_Title(SheetRecords, TitleLocation, IsNeededToExist:=True,
IsWhole:=True).Column, Criteria1:=Sheets(SheetSmartFilter).Cells(RowFilter, ColLocation).Value
 If Sheets(SheetSmartFilter).Cells(RowFilter, ColActn).Value <> "" Then .AutoFilter
Field:=General_Functions_Find_Title(SheetRecords, TitleActn, IsNeededToExist:=True,
IsWhole:=True).Column, Criteria1:=Sheets(SheetSmartFilter).Cells(RowFilter, ColActn).Value
 'If we don't use a filter we would need to use a cycle For/to or For/Each Cell in range
 'to determine whether or not the row meets the criteria that we are looking and then
 'save it on an array, collection, dictionary, etc
 'IG: For CounterRow = 2 To TotalRows
 'If Sheets(SheetSmartFilter).Cells(RowFilter, ColDesc).Value <> "" and
Sheets(SheetRecords).cells(CounterRow,ColDescInRecords).Value=
Sheets(SheetSmartFilter).Cells(RowFilter, ColDesc).Value then
 'Redim Preserve MyUnecessaryArray(UnecessaryNumber) ''Save to array:
(UnecessaryNumber)=MyUnecessaryArray. Or in a dictionary, etc. At the end, we would transpose this

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Excel® VBA Notes for Professionals 69

values into the sheet, at the end
 'both are the same, but, just try to see the time invested on each logic.
 If .Cells(1, 1).End(xlDown).Value <> "" Then Set RangeFiltered = .Rows("2:" &
Sheets(SheetRecords).Cells(Rows.Count, "A").End(xlUp).Row).SpecialCells(xlCellTypeVisible)
 'If it is not <>"" means that there was not filtered data!
 If RangeFiltered Is Nothing Then MsgBox "Err01Inventory_Filter: No data was found with the
given criteria!", vbCritical: Call ExcelNormal: End
 RangeFiltered.Copy Destination:=Cells(RowDataToPaste, ColDataToPaste)
 TotalQty = Cells(Rows.Count, ColQty).End(xlUp).Row
 For CounterQty = RowDataToPaste + 1 To TotalQty
 If Cells(CounterQty, ColActn).Value = "In" Then ' 2. If Cells(CounterQty, ColActn).Value = "In"
 TotalIn = Cells(CounterQty, ColQty).Value + TotalIn
 ElseIf Cells(CounterQty, ColActn).Value = "Out" Then ' 2. If Cells(CounterQty, ColActn).Value =
"In"
 TotalOut = Cells(CounterQty, ColQty).Value + TotalOut
 End If ' 2. If Cells(CounterQty, ColActn).Value = "In"
 Next CounterQty
 Range(RangeInResult).Value = TotalIn
 Range(RangeOutResult).Value = -(TotalOut)
 End With
 End If ' 1. If Cells(RowFilter, ColDesc).Value <> "" Or Cells(RowFilter, ColLocation).Value <>
"" Or Cells(RowFilter, ColActn).Value <> ""
End Sub

Testing and results:

As we saw in the previous image, this task has been achieved easily. By using autofilters a solution was provided
that just takes seconds to compute, is easy to explain to the user -since s/he is familiar with this command- and
took a few lines to the coder.

https://i.stack.imgur.com/v9jnz.gif
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Excel® VBA Notes for Professionals 70

Chapter 20: Application object
Section 20.1: Simple Application Object example: Display Excel
and VBE Version
Sub DisplayExcelVersions()

 MsgBox "The version of Excel is " & Application.Version
 MsgBox "The version of the VBE is " & Application.VBE.Version

End Sub

The use of the Application.Version property is useful for ensuring code only operates on a compatible version of
Excel.

Section 20.2: Simple Application Object example: Minimize the
Excel window
This code uses the top level Application object to minimize the main Excel window.

Sub MinimizeExcel()

 Application.WindowState = xlMinimized

End Sub

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Excel® VBA Notes for Professionals 71

Chapter 21: Charts and Charting
Section 21.1: Creating a Chart with Ranges and a Fixed Name
Charts can be created by working directly with the Series object that defines the chart data. In order to get to the
Series without an exisitng chart, you create a ChartObject on a given Worksheet and then get the Chart object
from it. The upside of working with the Series object is that you can set the Values and XValues by referring to
Range objects. These data properties will properly define the Series with references to those ranges. The downside
to this approach is that the same conversion is not handled when setting the Name; it is a fixed value. It will not
adjust with the underlying data in the original Range. Checking the SERIES formula and it is obvious that the name is
fixed. This must be handled by creating the SERIES formula directly.

Code used to create chart

Note that this code contains extra variable declarations for the Chart and Worksheet. These can be omitted if
they're not used. They can be useful however if you are modifying the style or any other chart properties.

Sub CreateChartWithRangesAndFixedName()

 Dim xData As Range
 Dim yData As Range
 Dim serName As Range

 'set the ranges to get the data and y value label
 Set xData = Range("B3:B12")
 Set yData = Range("C3:C12")
 Set serName = Range("C2")

 'get reference to ActiveSheet
 Dim sht As Worksheet
 Set sht = ActiveSheet

 'create a new ChartObject at position (48, 195) with width 400 and height 300
 Dim chtObj As ChartObject
 Set chtObj = sht.ChartObjects.Add(48, 195, 400, 300)

 'get reference to chart object
 Dim cht As Chart
 Set cht = chtObj.Chart

 'create the new series
 Dim ser As Series
 Set ser = cht.SeriesCollection.NewSeries

 ser.Values = yData
 ser.XValues = xData
 ser.Name = serName

 ser.ChartType = xlXYScatterLines

End Sub

Original data/ranges and resulting Chart after code runs

Note that the SERIES formula includes a "B" for the series name instead of a reference to the Range that created it.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Excel® VBA Notes for Professionals 72

Section 21.2: Creating an empty Chart
The starting point for the vast majority of charting code is to create an empty Chart. Note that this Chart is subject
to the default chart template that is active and may not actually be empty (if the template has been modified).

The key to the ChartObject is determining its location. The syntax for the call is ChartObjects.Add(Left, Top,
Width, Height). Once the ChartObject is created, you can use its Chart object to actually modify the chart. The
ChartObject behaves more like a Shape to position the chart on the sheet.

Code to create an empty chart

Sub CreateEmptyChart()

 'get reference to ActiveSheet

http://i.stack.imgur.com/w8BQR.png
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Excel® VBA Notes for Professionals 73

 Dim sht As Worksheet
 Set sht = ActiveSheet

 'create a new ChartObject at position (0, 0) with width 400 and height 300
 Dim chtObj As ChartObject
 Set chtObj = sht.ChartObjects.Add(0, 0, 400, 300)

 'get refernce to chart object
 Dim cht As Chart
 Set cht = chtObj.Chart

 'additional code to modify the empty chart
 '...

End Sub

Resulting Chart

Section 21.3: Create a Chart by Modifying the SERIES formula
For complete control over a new Chart and Series object (especially for a dynamic Series name), you must resort
to modifying the SERIES formula directly. The process to set up the Range objects is straightforward and the main
hurdle is simply the string building for the SERIES formula.

The SERIES formula takes the following syntax:

=SERIES(Name,XValues,Values,Order)

These contents can be supplied as references or as array values for the data items. Order represents the series
position within the chart. Note that the references to the data will not work unless they are fully qualified with the
sheet name. For an example of a working formula, click any existing series and check the formula bar.

http://i.stack.imgur.com/4o2XW.png
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Excel® VBA Notes for Professionals 74

Code to create a chart and set up data using the SERIES formula

Note that the string building to create the SERIES formula uses .Address(,,,True). This ensures that the external
Range reference is used so that a fully qualified address with the sheet name is included. You will get an error if
the sheet name is excluded.

Sub CreateChartUsingSeriesFormula()

 Dim xData As Range
 Dim yData As Range
 Dim serName As Range

 'set the ranges to get the data and y value label
 Set xData = Range("B3:B12")
 Set yData = Range("C3:C12")
 Set serName = Range("C2")

 'get reference to ActiveSheet
 Dim sht As Worksheet
 Set sht = ActiveSheet

 'create a new ChartObject at position (48, 195) with width 400 and height 300
 Dim chtObj As ChartObject
 Set chtObj = sht.ChartObjects.Add(48, 195, 400, 300)

 'get refernce to chart object
 Dim cht As Chart
 Set cht = chtObj.Chart

 'create the new series
 Dim ser As Series
 Set ser = cht.SeriesCollection.NewSeries

 'set the SERIES formula
 '=SERIES(name, xData, yData, plotOrder)

 Dim formulaValue As String
 formulaValue = "=SERIES(" & _
 serName.Address(, , , True) & "," & _
 xData.Address(, , , True) & "," & _
 yData.Address(, , , True) & ",1)"

 ser.Formula = formulaValue
 ser.ChartType = xlXYScatterLines

End Sub

Original data and resulting chart

Note that for this chart, the series name is properly set with a range to the desired cell. This means that updates will
propagate to the Chart.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Excel® VBA Notes for Professionals 75

Section 21.4: Arranging Charts into a Grid
A common chore with charts in Excel is standardizing the size and layout of multiple charts on a single sheet. If
done manually, you can hold down ALT while resizing or moving the chart to "stick" to cell boundaries. This
works for a couple charts, but a VBA approach is much simpler.

Code to create a grid

This code will create a grid of charts starting at a given (Top, Left) position, with a defined number of columns, and a
defined common chart size. The charts will be placed in the order they were created and wrap around the edge to
form a new row.

Sub CreateGridOfCharts()

http://i.stack.imgur.com/nIJsH.png
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Excel® VBA Notes for Professionals 76

 Dim int_cols As Integer
 int_cols = 3

 Dim cht_width As Double
 cht_width = 250

 Dim cht_height As Double
 cht_height = 200

 Dim offset_vertical As Double
 offset_vertical = 195

 Dim offset_horz As Double
 offset_horz = 40

 Dim sht As Worksheet
 Set sht = ActiveSheet

 Dim count As Integer
 count = 0

 'iterate through ChartObjects on current sheet
 Dim cht_obj As ChartObject
 For Each cht_obj In sht.ChartObjects

 'use integer division and Mod to get position in grid
 cht_obj.Top = (count \ int_cols) * cht_height + offset_vertical
 cht_obj.Left = (count Mod int_cols) * cht_width + offset_horz
 cht_obj.Width = cht_width
 cht_obj.Height = cht_height

 count = count + 1

 Next cht_obj
End Sub

Result with several charts

These pictures show the original random layout of charts and the resulting grid from running the code above.

Before

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Excel® VBA Notes for Professionals 77

After

http://i.stack.imgur.com/aJeuu.png
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Excel® VBA Notes for Professionals 78

http://i.stack.imgur.com/naXcW.png
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Excel® VBA Notes for Professionals 79

Chapter 22: CustomDocumentProperties in
practice
Using CustomDocumentProperties (CDPs) is a good method to store user defined values in a relatively safe way
within the same work book, but avoiding to show related cell values simply in an unprotected work sheet *).

Note: CDPs represent a separate collection comparable to BuiltInDocumentProperties, but allow to create user
defined property names of your own instead of a fixed collection.

*) Alternatively, you could enter values also in a hidden or "very hidden" workbook.

Section 22.1: Organizing new invoice numbers
Incrementing an invoice number and saving its value is a frequent task. Using CustomDocumentProperties (CDPs) is
a good method to store such numbers in a relatively safe way within the same work book, but avoiding to show
related cell values simply in an unprotected work sheet.

Additional hint:

Alternatively, you could enter values also in a hidden worksheet or even a so called "very hidden" worksheet (see
Using xlVeryHidden Sheets. Of course, it's possible to save data also to external files (e.g. ini file, csv or any other
type) or the registry.

Example content:

The example below shows

a function NextInvoiceNo that sets and returns the next invoice number,
a procedure DeleteInvoiceNo, that deletes the invoice CDP completely, as well as
a procedure showAllCDPs listing the complete CDPs collection with all names. Not using VBA, you can also list
them via the workbook's information: Info | Properties [DropDown:] | Advanced Properties | Custom

You can get and set the next invoice number (last no plus one) simply by calling the above mentioned function,
returning a string value in order to facilitate adding prefixes. "InvoiceNo" is implicitly used as CDP name in all
procedures.

Dim sNumber As String
sNumber = NextInvoiceNo ()

Example code:

Option Explicit

Sub Test()
 Dim sNumber As String
 sNumber = NextInvoiceNo()
 MsgBox "New Invoice No: " & sNumber, vbInformation, "New Invoice Number"
End Sub

Function NextInvoiceNo() As String
' Purpose: a) Set Custom Document Property (CDP) "InvoiceNo" if not yet existing
' b) Increment CDP value and return new value as string
' Declarations
 Dim prop As Object

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Excel® VBA Notes for Professionals 80

 Dim ret As String
 Dim wb As Workbook
' Set workbook and CDPs
 Set wb = ThisWorkbook
 Set prop = wb.CustomDocumentProperties

 ' ---
 ' Generate new CDP "InvoiceNo" if not yet existing
 ' ---
 If Not CDPExists("InvoiceNo") Then
 ' set temporary starting value "0"
 prop.Add "InvoiceNo", False, msoPropertyTypeString, "0"
 End If

 ' --
 ' Increment invoice no and return function value as string
 ' --
 ret = Format(Val(prop("InvoiceNo")) + 1, "0")
 ' a) Set CDP "InvoiceNo" = ret
 prop("InvoiceNo").value = ret
 ' b) Return function value
 NextInvoiceNo = ret
End Function

Private Function CDPExists(sCDPName As String) As Boolean
' Purpose: return True if custom document property (CDP) exists
' Method: loop thru CustomDocumentProperties collection and check if name parameter exists
' Site: cf.
http://stackoverflow.com/questions/23917977/alternatives-to-public-variables-in-vba/23918236#23918236
' vgl.:
https://answers.microsoft.com/en-us/msoffice/forum/msoffice_word-mso_other/using-customdocumentproper
ties-with-vba/91ef15eb-b089-4c9b-a8a7-1685d073fb9f
' Declarations
 Dim cdp As Variant ' element of CustomDocumentProperties Collection
 Dim boo As Boolean ' boolean value showing element exists
 For Each cdp In ThisWorkbook.CustomDocumentProperties
 If LCase(cdp.Name) = LCase(sCDPName) Then
 boo = True ' heureka
 Exit For ' exit loop
 End If
 Next
 CDPExists = boo ' return value to function
End Function

Sub DeleteInvoiceNo()
' Declarations
 Dim wb As Workbook
 Dim prop As Object
' Set workbook and CDPs
 Set wb = ThisWorkbook
 Set prop = wb.CustomDocumentProperties

' ----------------------
' Delete CDP "InvoiceNo"
' ----------------------
 If CDPExists("InvoiceNo") Then
 prop("InvoiceNo").Delete
 End If

End Sub

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Excel® VBA Notes for Professionals 81

Sub showAllCDPs()
' Purpose: Show all CustomDocumentProperties (CDP) and values (if set)
' Declarations
 Dim wb As Workbook
 Dim cdp As Object

 Dim i As Integer
 Dim maxi As Integer
 Dim s As String
' Set workbook and CDPs
 Set wb = ThisWorkbook
 Set cdp = wb.CustomDocumentProperties
' Loop thru CDP getting name and value
 maxi = cdp.Count
 For i = 1 To maxi
 On Error Resume Next ' necessary in case of unset value
 s = s & Chr(i + 96) & ") " & _
 cdp(i).Name & "=" & cdp(i).value & vbCr
 Next i
' Show result string
 Debug.Print s
End Sub

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Excel® VBA Notes for Professionals 82

Chapter 23: PowerPoint Integration
Through VBA
Section 23.1: The Basics: Launching PowerPoint from VBA
While there are many parameters that can be changed and variations that can be added depending on the desired
functionality, this example lays out the basic framework for launching PowerPoint.

Note: This code requires that the PowerPoint reference has been added to the active VBA Project. See
the References Documentation entry to learn how to enable the reference.

First, define variables for the Application, Presentation, and Slide Objects. While this can be done with late binding,
it is always best to use early binding when applicable.

Dim PPApp As PowerPoint.Application
Dim PPPres As PowerPoint.Presentation
Dim PPSlide As PowerPoint.Slide

Next, open or create a new instance of the PowerPoint application. Here, the On Error Resume Next call is used to
avoid an error being thrown by GetObject if PowerPoint has not yet been opened. See the Error Handling example
of the Best Practices Topic for a more detailed explanation.

'Open PPT if not running, otherwise select active instance
On Error Resume Next
Set PPApp = GetObject(, "PowerPoint.Application")
On Error GoTo ErrHandler
If PPApp Is Nothing Then
 'Open PowerPoint
 Set PPApp = CreateObject("PowerPoint.Application")
 PPApp.Visible = True
End If

Once the application has been launched, a new presentation and subsequently contained slide is generated for
use.

'Generate new Presentation and slide for graphic creation
Set PPPres = PPApp.Presentations.Add
Set PPSlide = PPPres.Slides.Add(1, ppLayoutBlank)

'Here, the slide type is set to the 4:3 shape with slide numbers enabled and the window
'maximized on the screen. These properties can, of course, be altered as needed

PPApp.ActiveWindow.ViewType = ppViewSlide
PPPres.PageSetup.SlideOrientation = msoOrientationHorizontal
PPPres.PageSetup.SlideSize = ppSlideSizeOnScreen
PPPres.SlideMaster.HeadersFooters.SlideNumber.Visible = msoTrue
PPApp.ActiveWindow.WindowState = ppWindowMaximized

Upon completion of this code, a new PowerPoint window with a blank slide will be open. By using the object
variables, shapes, text, graphics, and excel ranges can be added as desired

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Excel® VBA Notes for Professionals 83

Chapter 24: How to record a Macro
Section 24.1: How to record a Macro

The easiest way to record a macro is the button in the lower left corner of Excel looks like this:

When you click on this you will get a pop-up asking you to name the Macro and decide if you want to have a
shortcut key. Also, asks where to store the macro and for a description. You can choose any name you want, no
spaces are allowed.

If you want to have a shortcut assigned to your macro for quick use choose a letter that you will remember so that
you can quickly and easily use the macro over and over.

You can store the macro in "This Workbook," "New Workbook," or "Personal Macro Workbook." If you want the
macro you're about to record to be available only in the current workbook, choose "This Workbook." If you want it
saved to a brand new workbook, choose "New Workbook." And if you want the macro to be available to any
workbook you open, choose "Personal Macro Workbook."

After you have filled out this pop-up click on "Ok".

Then perform whatever actions you want to repeat with the macro. When finished click the same button to stop
recording. It now looks like this:

Now you can go to the Developer Tab and open Visual Basic. (or use Alt + F11)

https://i.stack.imgur.com/8NxzB.jpg
https://i.stack.imgur.com/lRVlj.jpg
https://i.stack.imgur.com/FEoFa.jpg
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Excel® VBA Notes for Professionals 84

You will now have a new Module under the Modules folder.

The newest module will contain the macro you just recorded. Double-click on it to bring it up.

I did a simple copy and paste:

Sub Macro1()
'
' Macro1 Macro
'

'
 Selection.Copy
 Range("A12").Select
 ActiveSheet.Paste
End Sub

If you don't want it to always paste into "A12" you can use Relative References by checking the "Use Relative

References" box on the Developer Tab:

Following the same steps as before will now turn the Macro into this:

Sub Macro2()
'
' Macro2 Macro
'

'
 Selection.Copy
 ActiveCell.Offset(11, 0).Range("A1").Select
 ActiveSheet.Paste
End Sub

Still copying the value from "A1" into a cell 11 rows down, but now you can perform the same macro with any
starting cell and the value from that cell will be copied to the cell 11 rows down.

https://i.stack.imgur.com/ajzah.jpg
https://i.stack.imgur.com/4SqYN.jpg
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Excel® VBA Notes for Professionals 85

Chapter 25: SQL in Excel VBA - Best
Practices
Section 25.1: How to use ADODB.Connection in VBA?
Requirements:

Add following references to the project:

Microsoft ActiveX Data Objects 2.8 Library

Microsoft ActiveX Data Objects Recordset 2.8 Library

Declare variables
Private mDataBase As New ADODB.Connection
Private mRS As New ADODB.Recordset
Private mCmd As New ADODB.Command

Create connection
a. with Windows Authentication
Private Sub OpenConnection(pServer As String, pCatalog As String)
 Call mDataBase.Open("Provider=SQLOLEDB;Initial Catalog=" & pCatalog & ";Data Source=" & pServer
& ";Integrated Security=SSPI")
 mCmd.ActiveConnection = mDataBase
End Sub

b. with SQL Server Authentication
Private Sub OpenConnection2(pServer As String, pCatalog As String, pUser As String, pPsw As String)
 Call mDataBase.Open("Provider=SQLOLEDB;Initial Catalog=" & pCatalog & ";Data Source=" & pServer
& ";Integrated Security=SSPI;User ID=" & pUser & ";Password=" & pPsw)
 mCmd.ActiveConnection = mDataBase
End Sub

Execute sql command

https://i.stack.imgur.com/3BDBt.png
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Excel® VBA Notes for Professionals 86

Private Sub ExecuteCmd(sql As String)
 mCmd.CommandText = sql
 Set mRS = mCmd.Execute
End Sub

Read data from record set
Private Sub ReadRS()
 Do While Not (mRS.EOF)
 Debug.Print "ShipperID: " & mRS.Fields("ShipperID").Value & " CompanyName: " &
mRS.Fields("CompanyName").Value & " Phone: " & mRS.Fields("Phone").Value
 Call mRS.MoveNext
 Loop
End Sub

Close connection
Private Sub CloseConnection()
 Call mDataBase.Close
 Set mRS = Nothing
 Set mCmd = Nothing
 Set mDataBase = Nothing
End Sub

How to use it?
Public Sub Program()
 Call OpenConnection("ServerName", "NORTHWND")
 Call ExecuteCmd("INSERT INTO [NORTHWND].[dbo].[Shippers]([CompanyName],[Phone]) Values ('speedy
shipping','(503) 555-1234')")
 Call ExecuteCmd("SELECT * FROM [NORTHWND].[dbo].[Shippers]")
 Call ReadRS
 Call CloseConnection
End Sub

Result

ShipperID: 1 CompanyName: Speedy Express Phone: (503) 555-9831

ShipperID: 2 CompanyName: United Package Phone: (503) 555-3199

ShipperID: 3 CompanyName: Federal Shipping Phone: (503) 555-9931

ShipperID: 4 CompanyName: speedy shipping Phone: (503) 555-1234

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Excel® VBA Notes for Professionals 87

Chapter 26: Excel-VBA Optimization
Excel-VBA Optimization refers also to coding better error handling by documentation and additional details. This is
shown here.

Section 26.1: Optimizing Error Search by Extended Debugging
Using Line Numbers ... and documenting them in case of error ("The importance of seeing Erl")

Detecting which line raises an error is a substantial part of any debugging and narrows the search for the cause. To
document identified error lines with a short description completes a successful error tracking, at best together with
the names of module and procedure. The example below saves these data to a log file.

Back ground

The error object returns error number (Err.Number) and error description (Err.Description), but doesn't explicitly
respond to the question where to locate the error. The Erl function, however, does, but on condition that you add
*line numbers) to the code (BTW one of several other concessions to former Basic times).

If there are no error lines at all, then the Erl function returns 0, if numbering is incomplete you'll get the procedure's
last preceding line number.

Option Explicit

Public Sub MyProc1()
Dim i As Integer
Dim j As Integer
On Error GoTo LogErr
10 j = 1 / 0 ' raises an error
okay:
Debug.Print "i=" & i
Exit Sub

LogErr:
MsgBox LogErrors("MyModule", "MyProc1", Err), vbExclamation, "Error " & Err.Number
Stop
Resume Next
End Sub

Public Function LogErrors(_
 ByVal sModule As String, _
 ByVal sProc As String, _
 Err As ErrObject) As String
' Purpose: write error number, description and Erl to log file and return error text
 Dim sLogFile As String: sLogFile = ThisWorkbook.Path & Application.PathSeparator &
"LogErrors.txt"
 Dim sLogTxt As String
 Dim lFile As Long

' Create error text
 sLogTxt = sModule & "|" & sProc & "|Erl " & Erl & "|Err " & Err.Number & "|" & Err.Description

 On Error Resume Next
 lFile = FreeFile

 Open sLogFile For Append As lFile
 Print #lFile, Format$(Now(), "yy.mm.dd hh:mm:ss "); sLogTxt

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Excel® VBA Notes for Professionals 88

 Print #lFile,
 Close lFile
' Return error text
 LogErrors = sLogTxt
 End Function

'Additional Code to show log file

Sub ShowLogFile()
Dim sLogFile As String: sLogFile = ThisWorkbook.Path & Application.PathSeparator & "LogErrors.txt"

On Error GoTo LogErr
Shell "notepad.exe " & sLogFile, vbNormalFocus

okay:
On Error Resume Next
Exit Sub

LogErr:
MsgBox LogErrors("MyModule", "ShowLogFile", Err), vbExclamation, "Error No " & Err.Number
Resume okay
End Sub

Section 26.2: Disabling Worksheet Updating
Disabling calculation of the worksheet can decrease running time of the macro significantly. Moreover, disabling
events, screen updating and page breaks would be beneficial. Following Sub can be used in any macro for this
purpose.

Sub OptimizeVBA(isOn As Boolean)
 Application.Calculation = IIf(isOn, xlCalculationManual, xlCalculationAutomatic)
 Application.EnableEvents = Not(isOn)
 Application.ScreenUpdating = Not(isOn)
 ActiveSheet.DisplayPageBreaks = Not(isOn)
End Sub

For optimization follow the below pseudo-code:

Sub MyCode()

 OptimizeVBA True

 'Your code goes here

 OptimizeVBA False

End Sub

Section 26.3: Row Deletion - Performance
Deleting rows is slow, specially when looping through cells and deleting rows, one by one

A different approach is using an AutoFilter to hide the rows to be deleted

Copy the visible range and Paste it into a new WorkSheet

Remove the initial sheet entirely

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Excel® VBA Notes for Professionals 89

With this method, the more rows to delete, the faster it will be

Example:

Option Explicit

'Deleted rows: 775,153, Total Rows: 1,000,009, Duration: 1.87 sec

Public Sub DeleteRows()
 Dim oldWs As Worksheet, newWs As Worksheet, wsName As String, ur As Range

 Set oldWs = ThisWorkbook.ActiveSheet
 wsName = oldWs.Name
 Set ur = oldWs.Range("F2", oldWs.Cells(oldWs.Rows.Count, "F").End(xlUp))

 Application.ScreenUpdating = False
 Set newWs = Sheets.Add(After:=oldWs) 'Create a new WorkSheet

 With ur 'Copy visible range after Autofilter (modify Criteria1 and 2 accordingly)
 .AutoFilter Field:=1, Criteria1:="<>0", Operator:=xlAnd, Criteria2:="<>"
 oldWs.UsedRange.Copy
 End With
 'Paste all visible data into the new WorkSheet (values and formats)
 With newWs.Range(oldWs.UsedRange.Cells(1).Address)
 .PasteSpecial xlPasteColumnWidths
 .PasteSpecial xlPasteAll
 newWs.Cells(1, 1).Select: newWs.Cells(1, 1).Copy
 End With

 With Application
 .CutCopyMode = False
 .DisplayAlerts = False
 oldWs.Delete
 .DisplayAlerts = True
 .ScreenUpdating = True
 End With
 newWs.Name = wsName
End Sub

Section 26.4: Disabling All Excel Functionality Before
executing large macros
The procedures bellow will temporarily disable all Excel features at WorkBook and WorkSheet level

FastWB() is a toggle that accepts On or Off flags

FastWS() accepts an Optional WorkSheet object, or none

If the ws parameter is missing it will turn all features on and off for all WorkSheets in the collection

A custom type can be used to capture all settings before turning them off
At the end of the process, the initial settings can be restored

Public Sub FastWB(Optional ByVal opt As Boolean = True)
 With Application
 .Calculation = IIf(opt, xlCalculationManual, xlCalculationAutomatic)
 If .DisplayAlerts <> Not opt Then .DisplayAlerts = Not opt

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Excel® VBA Notes for Professionals 90

 If .DisplayStatusBar <> Not opt Then .DisplayStatusBar = Not opt
 If .EnableAnimations <> Not opt Then .EnableAnimations = Not opt
 If .EnableEvents <> Not opt Then .EnableEvents = Not opt
 If .ScreenUpdating <> Not opt Then .ScreenUpdating = Not opt
 End With
 FastWS , opt
End Sub

Public Sub FastWS(Optional ByVal ws As Worksheet, Optional ByVal opt As Boolean = True)
 If ws Is Nothing Then
 For Each ws In Application.ThisWorkbook.Sheets
 OptimiseWS ws, opt
 Next
 Else
 OptimiseWS ws, opt
 End If
End Sub
Private Sub OptimiseWS(ByVal ws As Worksheet, ByVal opt As Boolean)
 With ws
 .DisplayPageBreaks = False
 .EnableCalculation = Not opt
 .EnableFormatConditionsCalculation = Not opt
 .EnablePivotTable = Not opt
 End With
End Sub

Restore all Excel settings to default

Public Sub XlResetSettings() 'default Excel settings
 With Application
 .Calculation = xlCalculationAutomatic
 .DisplayAlerts = True
 .DisplayStatusBar = True
 .EnableAnimations = False
 .EnableEvents = True
 .ScreenUpdating = True
 Dim sh As Worksheet
 For Each sh In Application.ThisWorkbook.Sheets
 With sh
 .DisplayPageBreaks = False
 .EnableCalculation = True
 .EnableFormatConditionsCalculation = True
 .EnablePivotTable = True
 End With
 Next
 End With
End Sub

Section 26.5: Checking time of execution
Different procedures can give out the same result, but they would use different processing time. In order to check
out which one is faster, a code like this can be used:

time1 = Timer

For Each iCell In MyRange
 iCell = "text"
Next iCell

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Excel® VBA Notes for Professionals 91

time2 = Timer

For i = 1 To 30
 MyRange.Cells(i) = "text"
Next i

time3 = Timer

debug.print "Proc1 time: " & cStr(time2-time1)
debug.print "Proc2 time: " & cStr(time3-time2)

MicroTimer:

Private Declare PtrSafe Function getFrequency Lib "Kernel32" Alias "QueryPerformanceFrequency"
(cyFrequency As Currency) As Long
Private Declare PtrSafe Function getTickCount Lib "Kernel32" Alias "QueryPerformanceCounter"
(cyTickCount As Currency) As Long

Function MicroTimer() As Double
 Dim cyTicks1 As Currency
 Static cyFrequency As Currency

 MicroTimer = 0
 If cyFrequency = 0 Then getFrequency cyFrequency 'Get frequency
 getTickCount cyTicks1 'Get ticks
 If cyFrequency Then MicroTimer = cyTicks1 / cyFrequency 'Returns Seconds
End Function

Section 26.6: Using With blocks
Using with blocks can accelerate the process of running a macro. Instead writing a range, chart name, worksheet,
etc. you can use with-blocks like below;

With ActiveChart
 .Parent.Width = 400
 .Parent.Height = 145
 .Parent.Top = 77.5 + 165 * step - replacer * 15
 .Parent.Left = 5
End With

Which is faster than this:

ActiveChart.Parent.Width = 400
ActiveChart.Parent.Height = 145
ActiveChart.Parent.Top = 77.5 + 165 * step - replacer * 15
ActiveChart.Parent.Left = 5

Notes:

Once a With block is entered, object can't be changed. As a result, you can't use a single With statement to
affect a number of different objects

Don't jump into or out of With blocks. If statements in a With block are executed, but either the With or
End With statement is not executed, a temporary variable containing a reference to the object remains
in memory until you exit the procedure

Don't Loop inside With statements, especially if the cached object is used as an iterator

You can nest With statements by placing one With block within another. However, because members of outer

https://msdn.microsoft.com/en-us/library/office/ff700515(v=office.14).aspx#Anchor_5
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Excel® VBA Notes for Professionals 92

With blocks are masked within the inner With blocks, you must provide a fully qualified object reference in an
inner With block to any member of an object in an outer With block.

Nesting Example:

This example uses the With statement to execute a series of statements on a single object.
The object and its properties are generic names used for illustration purposes only.

With MyObject
 .Height = 100 'Same as MyObject.Height = 100.
 .Caption = "Hello World" 'Same as MyObject.Caption = "Hello World".
 With .Font
 .Color = Red 'Same as MyObject.Font.Color = Red.
 .Bold = True 'Same as MyObject.Font.Bold = True.
 MyObject.Height = 200 'Inner-most With refers to MyObject.Font (must be qualified
 End With
End With

More Info on MSDN

https://msdn.microsoft.com/en-us/vba/language-reference-vba/articles/with-statement
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Excel® VBA Notes for Professionals 93

Chapter 27: VBA Security
Section 27.1: Password Protect your VBA
Sometimes you have sensitive information in your VBA (e.g., passwords) that you don't want users to have access
to. You can achieve basic security on this information by password-protecting your VBA project.

Follow these steps:

Open your Visual Basic Editor (Alt + F11)1.
Navigate to Tools -> VBAProject Properties...2.
Navigate to the Protection tab3.
Check off the "Lock project for viewing" checkbox4.
Enter your desired password in the Password and Confirm Password textboxes5.

Now when someone wants to access your code within an Office application, they will first need to enter the
password. Be aware, however, that even a strong VBA project password is trivial to break.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Excel® VBA Notes for Professionals 94

Chapter 28: Debugging and
Troubleshooting
Section 28.1: Immediate Window
If you would like to test a line of macro code without needing to run an entire sub, you can type commands directly
into the Immediate Window and hit ENTER to run the line.

For testing the output of a line, you can precede it with a question mark ? to print directly to the Immediate
Window. Alternatively, you can also use the print command to have the output printed.

While in the Visual Basic Editor, press CTRL + G to open the Immediate Window. To rename your currently selected
sheet to "ExampleSheet", type the following in the Immediate Window and hit ENTER

 ActiveSheet.Name = "ExampleSheet"

To print the currently selected sheet's name directly in the Immediate Window

? ActiveSheet.Name
ExampleSheet

This method can be very useful to test the functionality of built in or user defined functions before implementing
them in code. The example below demonstrates how the Immediate Window can be used to test the output of a
function or series of functions to confirm an expected.

'In this example, the Immediate Window was used to confirm that a series of Left and Right
'string methods would return the desired string

'expected output: "value"
print Left(Right("1111value1111",9),5) ' <---- written code here, ENTER pressed
value ' <---- output

The Immediate Window can also be used to set or reset Application, Workbook, or other needed properties. This
can be useful if you have Application.EnableEvents = False in a subroutine that unexpectedly throws an error,
causing it to close without resetting the value to True (which can cause frustrating and unexpected functionality. In
that case, the commands can be typed directly into the Immediate Window and run:

? Application.EnableEvents ' <---- Testing the current state of "EnableEvents"
False ' <---- Output
Application.EnableEvents = True ' <---- Resetting the property value to True
? Application.EnableEvents ' <---- Testing the current state of "EnableEvents"
True ' <---- Output

For more advanced debugging techniques, a colon : can be used as a line separator. This can be used for multi-line
expressions such as looping in the example below.

x = Split("a,b,c",","): For i = LBound(x,1) to UBound(x,1): Debug.Print x(i): Next i '<----Input
this and press enter
a '<----Output
b '<----Output
c '<----Output

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Excel® VBA Notes for Professionals 95

Section 28.2: Use Timer to Find Bottlenecks in Performance
The first step in optimizing for speed is finding the slowest sections of code. The Timer VBA function returns the
number of seconds elapsed since midnight with a precision of 1/256th of a second (3.90625 milliseconds) on
Windows based PCs. The VBA functions Now and Time are only accurate to a second.

Dim start As Double ' Timer returns Single, but converting to Double to avoid
start = Timer ' scientific notation like 3.90625E-03 in the Immediate window
' ... part of the code
Debug.Print Timer - start; "seconds in part 1"

start = Timer
' ... another part of the code
Debug.Print Timer - start; "seconds in part 2"

Section 28.3: Debugger Locals Window
The Locals window provides easy access to the current value of variables and objects within the scope of the
function or subroutine you are running. It is an essential tool to debugging your code and stepping through
changes in order to find issues. It also allows you to explore properties you might not have known existed.

Take the following example,

Option Explicit
Sub LocalsWindowExample()
 Dim findMeInLocals As Integer
 Dim findMEInLocals2 As Range

 findMeInLocals = 1
 Set findMEInLocals2 = ActiveWorkbook.Sheets(1).Range("A1")
End Sub

In the VBA Editor, click View --> Locals Window

Then by stepping through the code using F8 after clicking inside the subroutine, we have stopped before getting to
assigning findMeinLocals. Below you can see the value is 0 --- and this is what would be used if you never assigned
it a value. The range object is 'Nothing'.

http://i.stack.imgur.com/rT6Wf.png
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Excel® VBA Notes for Professionals 96

If we stop right before the subroutine ends, we can see the final values of the variables.

We can see findMeInLocals with a value of 1 and type of Integer, and FindMeInLocals2 with a type of Range/Range.
If we click the + sign we can expand the object and see its properties, such as count or column.

Section 28.4: Debug.Print
To print a listing of the Error Code descriptions to the Immediate Window, pass it to the Debug.Print function:

Private Sub ListErrCodes()
 Debug.Print "List Error Code Descriptions"
 For i = 0 To 65535
 e = Error(i)
 If e <> "Application-defined or object-defined error" Then Debug.Print i & ": " & e
 Next i
End Sub

http://i.stack.imgur.com/B8vZt.png
http://i.stack.imgur.com/8smT0.png
http://i.stack.imgur.com/VE12u.png
http://i.stack.imgur.com/m7Rdu.png
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Excel® VBA Notes for Professionals 97

You can show the Immediate Window by:

Selecting View | Immediate Window from the menu bar
Using the keyboard shortcut Ctrl-G

Section 28.5: Stop
The Stop command will pause the execution when called. From there, the process can be resumed or be executed
step by step.

Sub Test()
 Dim TestVar as String
 TestVar = "Hello World"
 Stop 'Sub will be executed to this point and then wait for the user
 MsgBox TestVar
End Sub

Section 28.6: Adding a Breakpoint to your code
You can easily add a breakpoint to your code by clicking on the grey column to the left of the line of your VBA code
where you want execution to stop. A red dot appears in the column and the breakpoint code is also highlighted in
red.

You can add multiple breakpoints throughout your code and resuming execution is achieved by pressing the "play"
icon in your menu bar. Not all code can be a breakpoint as variable definition lines, the first or last line of a
procedure and comment lines cannot be selected as a breakpoint.

http://i.stack.imgur.com/AJUpD.jpg
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Excel® VBA Notes for Professionals 98

Chapter 29: VBA Best Practices
Section 29.1: ALWAYS Use "Option Explicit"
In the VBA Editor window, from the Tools menu select "Options":

Then in the "Editor" tab, make sure that "Require Variable Declaration" is checked:

Selecting this option will automatically put Option Explicit at the top of every VBA module.

Small note: This is true for the modules, class modules, etc. that haven't been opened so far. So if you
already had a look at e.g. the code of Sheet1 before activating the option "Require Variable Declaration",
Option Explicit will not be added!

Option Explicit requires that every variable has to be defined before use, e.g. with a Dim statement. Without
Option Explicit enabled, any unrecognized word will be assumed by the VBA compiler to be a new variable of the
Variant type, causing extremely difficult-to-spot bugs related to typographical errors. With Option Explicit
enabled, any unrecognized words will cause a compile error to be thrown, indicating the offending line.

Example :

https://i.stack.imgur.com/DBq0L.png
https://i.stack.imgur.com/B3Gam.png
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Excel® VBA Notes for Professionals 99

If you run the following code :

Sub Test()
 my_variable = 12
 MsgBox "My Variable is : " & myvariable
End Sub

You will get the following message :

You have made an error by writing myvariable instead of my_variable, then the message box displays an empty
variable. If you use Option Explicit , this error is not possible because you will get a compile error message
indicating the problem.

Now if you add the correct declaration :

Sub Test()
 Dim my_variable As Integer
 my_variable = 12
 MsgBox "My Variable is : " & myvariable
End Sub

You will obtain an error message indicating precisely the error with myvariable :

https://i.stack.imgur.com/DDpmM.png
https://i.stack.imgur.com/0K5UY.png
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Excel® VBA Notes for Professionals 100

Note on Option Explicit and Arrays (Declaring a Dynamic Array):

You can use the ReDim statement to declare an array implicitly within a procedure.

Be careful not to misspell the name of the array when you use the ReDim statement

Even if the Option Explicit statement is included in the module, a new array will be created

Dim arr() as Long

ReDim ar() 'creates new array "ar" - "ReDim ar()" acts like "Dim ar()"

Section 29.2: Work with Arrays, Not With Ranges
Office Blog - Excel VBA Performance Coding Best Practices

Often, best performance is achieved by avoiding the use of Range as much as possible. In this example we read in
an entire Range object into an array, square each number in the array, and then return the array back to the Range.
This accesses Range only twice, whereas a loop would access it 20 times for the read/writes.

Option Explicit
Sub WorkWithArrayExample()

Dim DataRange As Variant
Dim Irow As Long
Dim Icol As Integer
DataRange = ActiveSheet.Range("A1:A10").Value ' read all the values at once from the Excel grid, put
into an array

For Irow = LBound(DataRange,1) To UBound(DataRange, 1) ' Get the number of rows.
 For Icol = LBound(DataRange,2) To UBound(DataRange, 2) ' Get the number of columns.
 DataRange(Irow, Icol) = DataRange(Irow, Icol) * DataRange(Irow, Icol) ' cell.value^2
 Next Icol
Next Irow

https://i.stack.imgur.com/Z55Ln.png
https://msdn.microsoft.com/en-us/vba/language-reference-vba/articles/declaring-arrays#declaring-a-dynamic-array
https://blogs.office.com/2009/03/12/excel-vba-performance-coding-best-practices/
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Excel® VBA Notes for Professionals 101

ActiveSheet.Range("A1:A10").Value = DataRange ' writes all the results back to the range at once

End Sub

More tips and info with timed examples can be found in Charles Williams's Writing efficient VBA UDFs (Part 1) and
other articles in the series.

Section 29.3: Switch o properties during macro execution
It is best practice in any programming language to avoid premature optimization. However, if testing reveals that
your code is running too slowly, you may gain some speed by switching off some of the application’s properties
while it runs. Add this code to a standard module:

Public Sub SpeedUp(_
 SpeedUpOn As Boolean, _
 Optional xlCalc as XlCalculation = xlCalculationAutomatic _
)
 With Application
 If SpeedUpOn Then
 .ScreenUpdating = False
 .Calculation = xlCalculationManual
 .EnableEvents = False
 .DisplayStatusBar = False 'in case you are not showing any messages
 ActiveSheet.DisplayPageBreaks = False 'note this is a sheet-level setting
 Else
 .ScreenUpdating = True
 .Calculation = xlCalc
 .EnableEvents = True
 .DisplayStatusBar = True
 ActiveSheet.DisplayPageBreaks = True
 End If
 End With
End Sub

More info on Office Blog - Excel VBA Performance Coding Best Practices

And just call it at beginning and end of macros:

Public Sub SomeMacro
 'store the initial "calculation" state
 Dim xlCalc As XlCalculation
 xlCalc = Application.Calculation

 SpeedUp True

 'code here ...

 'by giving the second argument the initial "calculation" state is restored
 'otherwise it is set to 'xlCalculationAutomatic'
 SpeedUp False, xlCalc
End Sub

While these can largely be considered "enhancements" for regular Public Sub procedures, disabling event
handling with Application.EnableEvents = False should be considered mandatory for Worksheet_Change and
Workbook_SheetChange private event macros that change values on one or more worksheets. Failure to disable
event triggers will cause the event macro to recursively run on top of itself when a value changes and can lead to a
"frozen" workbook. Remember to turn events back on before leaving the event macro, possibly through a "safe
exit" error handler.

https://fastexcel.wordpress.com/2011/05/25/writing-efficient-vba-udfs-part-1/
https://fastexcel.wordpress.com/page/2/?s=writing+efficient
https://blogs.office.com/2009/03/12/excel-vba-performance-coding-best-practices/
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Excel® VBA Notes for Professionals 102

Option Explicit

Private Sub Worksheet_Change(ByVal Target As Range)
 If Not Intersect(Target, Range("A:A")) Is Nothing Then
 On Error GoTo bm_Safe_Exit
 Application.EnableEvents = False

 'code that may change a value on the worksheet goes here

 End If
bm_Safe_Exit:
 Application.EnableEvents = True
End Sub

One caveat: While disabling these settings will improve run time, they may make debugging your application much
more difficult. If your code is not functioning correctly, comment out the SpeedUp True call until you figure out the
problem.

This is particularly important if you are writing to cells in a worksheet and then reading back in calculated results
from worksheet functions since the xlCalculationManual prevents the workbook from calculating. To get around
this without disabling SpeedUp, you may want to include Application.Calculate to run a calculation at specific
points.

NOTE: Since these are properties of the Application itself, you need to ensure that they are enabled again before
your macro exits. This makes it particularly important to use error handlers and to avoid multiple exit points (i.e.
End or Unload Me).

With error handling:

Public Sub SomeMacro()
 'store the initial "calculation" state
 Dim xlCalc As XlCalculation
 xlCalc = Application.Calculation

 On Error GoTo Handler
 SpeedUp True

 'code here ...
 i = 1 / 0
CleanExit:
 SpeedUp False, xlCalc
 Exit Sub
Handler:
 'handle error
 Resume CleanExit
End Sub

Section 29.4: Use VB constants when available
If MsgBox("Click OK") = vbOK Then

can be used in place of

If MsgBox("Click OK") = 1 Then

in order to improve readability.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Excel® VBA Notes for Professionals 103

Use Object Browser to find available VB constants. View → Object Browser or F2 from VB Editor.

Enter class to search

View members available

Section 29.5: Avoid using SELECT or ACTIVATE
It is very rare that you'll ever want to use SELECT or Activate in your code, but some Excel methods do require a
worksheet or workbook to be activated before they'll work as expected.

If you're just starting to learn VBA, you'll often be suggested to record your actions using the macro recorder, then
go look at the code. For example, I recorded actions taken to enter a value in cell D3 on Sheet2, and the macro code
looks like this:

Option Explicit
Sub Macro1()

https://i.stack.imgur.com/VXZD4.png
https://i.stack.imgur.com/tBix3.png
https://i.stack.imgur.com/QSQJw.png
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Excel® VBA Notes for Professionals 104

'
' Macro1 Macro
'

'
 Sheets("Sheet2").Select
 Range("D3").Select
 ActiveCell.FormulaR1C1 = "3.1415" '(see **note below)
 Range("D4").Select
End Sub

Remember though, the macro recorder creates a line of code for EACH of your (user) actions. This includes clicking
on the worksheet tab to select Sheet2 (Sheets("Sheet2").Select), clicking on cell D3 before entering the value
(Range("D3").Select), and using the Enter key (which is effectively "selecting" the cell below the currently selected
cell: Range("D4").Select).

There are multiple issues with using .Select here:

The worksheet is not always specified. This happens if you don't switch worksheets while recording, and
means that the code will yield different results for different active worksheets.
.Select() is slow. Even if Application.ScreenUpdating is set to False, this is an unneccessary operation to
be processed.
.Select() is unruly. If Application.ScreenUpdating is left to True, Excel will actually select the cells, the
worksheet, the form... whatever it is you're working with. This is stressful to the eyes and really unpleasant to
watch.
.Select() will trigger listeners. This is a bit advanced already, but unless worked around, functions like
Worksheet_SelectionChange() will be triggered.

When you're coding in VBA, all of the "typing" actions (i.e. SELECT statements) are no longer necessary. Your code
may be reduced to a single statement to put the value in the cell:

'--- GOOD
ActiveWorkbook.Sheets("Sheet2").Range("D3").Value = 3.1415

'--- BETTER
Dim myWB As Workbook
Dim myWS As Worksheet
Dim myCell As Range

Set myWB = ThisWorkbook '*** see NOTE2
Set myWS = myWB.Sheets("Sheet2")
Set myCell = myWS.Range("D3")

myCell.Value = 3.1415

(The BETTER example above shows using intermediate variables to separate different parts of the cell reference.
The GOOD example will always work just fine, but can be very cumbersome in much longer code modules and
more difficult to debug if one of the references is mistyped.)

**NOTE: the macro recorder makes many assumptions about the type of data you're entering, in this case entering
a string value as a formula to create the value. Your code doesn't have to do this and can simply assign a numerical
value directly to the cell as shown above.

**NOTE2: the recommended practice is to set your local workbook variable to ThisWorkbook instead of
ActiveWorkbook (unless you explicitly need it). The reason is your macro will generally need/use resources in
whatever workbook the VBA code originates and will NOT look outside of that workbook -- again, unless you

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Excel® VBA Notes for Professionals 105

explicitly direct your code to work with another workbook. When you have multiple workbooks open in Excel, the
ActiveWorkbook is the one with the focus which may be different from the workbook being viewed in your VBA Editor.
So you think you're executing in a one workbook when you're really referencing another. ThisWorkbook refers to
the workbook containing the code being executed.

Section 29.6: Always define and set references to all
Workbooks and Sheets
When working with multiple open Workbooks, each of which may have multiple Sheets, it’s safest to define and set
reference to all Workbooks and Sheets.

Don't rely on ActiveWorkbook or ActiveSheet as they might be changed by the user.

The following code example demonstrates how to copy a range from “Raw_Data” sheet in the “Data.xlsx” workbook
to “Refined_Data” sheet in the “Results.xlsx” workbook.

The procedure also demonstrates how to copy and paste without using the SELECT method.

Option Explicit

Sub CopyRanges_BetweenShts()

 Dim wbSrc As Workbook
 Dim wbDest As Workbook
 Dim shtCopy As Worksheet
 Dim shtPaste As Worksheet

 ' set reference to all workbooks by name, don't rely on ActiveWorkbook
 Set wbSrc = Workbooks("Data.xlsx")
 Set wbDest = Workbooks("Results.xlsx")

 ' set reference to all sheets by name, don't rely on ActiveSheet
 Set shtCopy = wbSrc.Sheet1 '// "Raw_Data" sheet
 Set shtPaste = wbDest.Sheet2 '// "Refined_Data") sheet

 ' copy range from "Data" workbook to "Results" workbook without using Select
 shtCopy.Range("A1:C10").Copy _
 Destination:=shtPaste.Range("A1")

End Sub

Section 29.7: Use descriptive variable naming
Descriptive names and structure in your code help make comments unnecessary

Dim ductWidth As Double
Dim ductHeight As Double
Dim ductArea As Double

ductArea = ductWidth * ductHeight

is better than

Dim a, w, h

a = w * h

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Excel® VBA Notes for Professionals 106

This is especially helpful when you are copying data from one place to another, whether it's a cell, range, worksheet,
or workbook. Help yourself by using names such as these:

Dim myWB As Workbook
Dim srcWS As Worksheet
Dim destWS As Worksheet
Dim srcData As Range
Dim destData As Range

Set myWB = ActiveWorkbook
Set srcWS = myWB.Sheets("Sheet1")
Set destWS = myWB.Sheets("Sheet2")
Set srcData = srcWS.Range("A1:A10")
Set destData = destWS.Range("B11:B20")
destData = srcData

If you declare multiple variables in one line make sure to specify a type for every variable like:

Dim ductWidth As Double, ductHeight As Double, ductArea As Double

The following will only declare the last variable and the first ones will remain Variant:

Dim ductWidth, ductHeight, ductArea As Double

Section 29.8: Document Your Work
It's good practice to document your work for later use, especially if you are coding for a dynamic workload. Good
comments should explain why the code is doing something, not what the code is doing.

Function Bonus(EmployeeTitle as String) as Double
 If EmployeeTitle = "Sales" Then
 Bonus = 0 'Sales representatives receive commission instead of a bonus
 Else
 Bonus = .10
 End If
End Function

If your code is so obscure that it requires comments to explain what it is doing, consider rewriting it to be more
clear instead of explaining it through comments. For example, instead of:

Sub CopySalesNumbers
 Dim IncludeWeekends as Boolean

 'Boolean values can be evaluated as an integer, -1 for True, 0 for False.
 'This is used here to adjust the range from 5 to 7 rows if including weekends.
 Range("A1:A" & 5 - (IncludeWeekends * 2)).Copy
 Range("B1").PasteSpecial
End Sub

Clarify the code to be easier to follow, such as:

Sub CopySalesNumbers
 Dim IncludeWeekends as Boolean
 Dim DaysinWeek as Integer

 If IncludeWeekends Then
 DaysinWeek = 7

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Excel® VBA Notes for Professionals 107

 Else
 DaysinWeek = 5
 End If
 Range("A1:A" & DaysinWeek).Copy
 Range("B1").PasteSpecial
End Sub

Section 29.9: Error Handling
Good error handling prevents end users from seeing VBA runtime errors and helps the developer easily diagnose
and correct errors.

There are three main methods of Error Handling in VBA, two of which should be avoided for distributed programs
unless specifically required in the code.

On Error GoTo 0 'Avoid using

or

On Error Resume Next 'Avoid using

Prefer using:

On Error GoTo <line> 'Prefer using

On Error GoTo 0

If no error handling is set in your code, On Error GoTo 0 is the default error handler. In this mode, any runtime
errors will launch the typical VBA error message, allowing you to either end the code or enter debug mode,
identifying the source. While writing code, this method is the simplest and most useful, but it should always be
avoided for code that is distributed to end users, as this method is very unsightly and difficult for end users to
understand.

On Error Resume Next

On Error Resume Next will cause VBA to ignore any errors that are thrown at runtime for all lines following the
error call until the error handler has been changed. In very specific instances, this line can be useful, but it should
be avoided outside of these cases. For example, when launching a separate program from an Excel Macro, the On
Error Resume Next call can be useful if you are unsure whether or not the program is already open:

'In this example, we open an instance of Powerpoint using the On Error Resume Next call
Dim PPApp As PowerPoint.Application
Dim PPPres As PowerPoint.Presentation
Dim PPSlide As PowerPoint.Slide

'Open PPT if not running, otherwise select active instance
On Error Resume Next
Set PPApp = GetObject(, "PowerPoint.Application")
On Error GoTo ErrHandler
If PPApp Is Nothing Then
 'Open PowerPoint
 Set PPApp = CreateObject("PowerPoint.Application")
 PPApp.Visible = True
End If

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Excel® VBA Notes for Professionals 108

Had we not used the On Error Resume Next call and the Powerpoint application was not already open, the
GetObject method would throw an error. Thus, On Error Resume Next was necessary to avoid creating two
instances of the application.

Note: It is also a best practice to immediately reset the error handler as soon as you no longer need the On Error
Resume Next call

On Error GoTo <line>

This method of error handling is recommended for all code that is distributed to other users. This allows the
programmer to control exactly how VBA handles an error by sending the code to the specified line. The tag can be
filled with any string (including numeric strings), and will send the code to the corresponding string that is followed
by a colon. Multiple error handling blocks can be used by making different calls of On Error GoTo <line>. The
subroutine below demonstrates the syntax of an On Error GoTo <line> call.

Note: It is essential that the Exit Sub line is placed above the first error handler and before every subsequent error
handler to prevent the code from naturally progressing into the block without an error being called. Thus, it is best
practice for function and readability to place error handlers at the end of a code block.

Sub YourMethodName()
 On Error GoTo errorHandler
 ' Insert code here
 On Error GoTo secondErrorHandler

 Exit Sub 'The exit sub line is essential, as the code will otherwise
 'continue running into the error handling block, likely causing an error

errorHandler:
 MsgBox "Error " & Err.Number & ": " & Err.Description & " in " & _
 VBE.ActiveCodePane.CodeModule, vbOKOnly, "Error"
 Exit Sub

secondErrorHandler:
 If Err.Number = 424 Then 'Object not found error (purely for illustration)
 Application.ScreenUpdating = True
 Application.EnableEvents = True
 Exit Sub
 Else
 MsgBox "Error " & Err.Number & ": " & Err.Desctription
 Application.ScreenUpdating = True
 Application.EnableEvents = True
 Exit Sub
 End If
 Exit Sub

End Sub

If you exit your method with your error handling code, ensure that you clean up:

Undo anything that is partially completed
Close files
Reset screen updating
Reset calculation mode
Reset events
Reset mouse pointer
Call unload method on instances of objects, that persist after the End Sub

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Excel® VBA Notes for Professionals 109

Reset status bar

Section 29.10: Never Assume The Worksheet
Even when all your work is directed at a single worksheet, it's still a very good practice to explicitly specify the
worksheet in your code. This habit makes it much easier to expand your code later, or to lift parts (or all) of a Sub or
Function to be re-used someplace else. Many developers establish a habit of (re)using the same local variable
name for a worksheet in their code, making re-use of that code even more straightforward.

As an example, the following code is ambiguous -- but works! -- as long the developer doesn't activate or change to
a different worksheet:

Option Explicit
Sub ShowTheTime()
 '--- displays the current time and date in cell A1 on the worksheet
 Cells(1, 1).Value = Now() ' don't refer to Cells without a sheet reference!
End Sub

If Sheet1 is active, then cell A1 on Sheet1 will be filled with the current date and time. But if the user changes
worksheets for any reason, then the code will update whatever the worksheet is currently active. The destination
worksheet is ambiguous.

The best practice is to always identify which worksheet to which your code refers:

Option Explicit
Sub ShowTheTime()
 '--- displays the current time and date in cell A1 on the worksheet
 Dim myWB As Workbook
 Set myWB = ThisWorkbook
 Dim timestampSH As Worksheet
 Set timestampSH = myWB.Sheets("Sheet1")
 timestampSH.Cells(1, 1).Value = Now()
End Sub

The code above is clear in identifying both the workbook and the worksheet. While it may seem like overkill,
creating a good habit concerning target references will save you from future problems.

Section 29.11: Avoid re-purposing the names of Properties or
Methods as your variables
It is generally not considered 'best practice' to re-purpose the reserved names of Properties or Methods as the
name(s) of your own procedures and variables.

Bad Form - While the following is (strictly speaking) legal, working code the re-purposing of the Find method as well
as the Row, Column and Address properties can cause problems/conflicts with name ambiguity and is just plain
confusing in general.

Option Explicit

Sub find()
 Dim row As Long, column As Long
 Dim find As String, address As Range

 find = "something"

 With ThisWorkbook.Worksheets("Sheet1").Cells

https://msdn.microsoft.com/en-us/library/office/ff839746.aspx
https://msdn.microsoft.com/en-us/library/office/ff196952.aspx
https://msdn.microsoft.com/en-us/library/office/ff198200.aspx
https://msdn.microsoft.com/en-us/library/office/ff837625.aspx
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Excel® VBA Notes for Professionals 110

 Set address = .SpecialCells(xlCellTypeLastCell)
 row = .find(what:=find, after:=address).row '< note .row not capitalized
 column = .find(what:=find, after:=address).column '< note .column not capitalized

 Debug.Print "The first 'something' is in " & .Cells(row, column).address(0, 0)
 End With
End Sub

Good Form - With all of the reserved words renamed into close but unique approximations of the originals, any
potential naming conflicts have been avoided.

Option Explicit

Sub myFind()
 Dim rw As Long, col As Long
 Dim wht As String, lastCell As Range

 wht = "something"

 With ThisWorkbook.Worksheets("Sheet1").Cells
 Set lastCell = .SpecialCells(xlCellTypeLastCell)
 rw = .Find(What:=wht, After:=lastCell).Row '◄ note .Find and .Row
 col = .Find(What:=wht, After:=lastCell).Column '◄ .Find and .Column

 Debug.Print "The first 'something' is in " & .Cells(rw, col).Address(0, 0)
 End With
End Sub

While there may come a time when you want to intentionally rewrite a standard method or property to your own
specifications, those situations are few and far between. For the most part, stay away from reusing reserved names
for your own constructs.

Section 29.12: Avoid using ActiveCell or ActiveSheet in Excel
Using ActiveCell or ActiveSheet can be source of mistakes if (for any reason) the code is executed in the wrong
place.

ActiveCell.Value = "Hello"
'will place "Hello" in the cell that is currently selected
Cells(1, 1).Value = "Hello"
'will always place "Hello" in A1 of the currently selected sheet

ActiveSheet.Cells(1, 1).Value = "Hello"
'will place "Hello" in A1 of the currently selected sheet
Sheets("MySheetName").Cells(1, 1).Value = "Hello"
'will always place "Hello" in A1 of the sheet named "MySheetName"

The use of Active* can create problems in long running macros if your user gets bored and clicks on another
worksheet or opens another workbook.
It can create problems if your code opens or creates another workbook.
It can create problems if your code uses Sheets("MyOtherSheet").Select and you've forgotten which sheet
you were on before you start reading from or writing to it.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Excel® VBA Notes for Professionals 111

Section 29.13: WorksheetFunction object executes faster than
a UDF equivalent
VBA is compiled in run-time, which has a huge negative impact on it's performance, everything built-in will be faster,
try to use them.

As an example I'm comparing SUM and COUNTIF functions, but you can use if for anything you can solve with
WorkSheetFunctions.

A first attempt for those would be to loop through the range and process it cell by cell (using a range):

Sub UseRange()
 Dim rng as Range
 Dim Total As Double
 Dim CountLessThan01 As Long

 Total = 0
 CountLessThan01 = 0
 For Each rng in Sheets(1).Range("A1:A100")
 Total = Total + rng.Value2
 If rng.Value < 0.1 Then
 CountLessThan01 = CountLessThan01 + 1
 End If
 Next rng
 Debug.Print Total & ", " & CountLessThan01
End Sub

One improvement can be to store the range values in an array and process that:

Sub UseArray()
 Dim DataToSummarize As Variant
 Dim i As Long
 Dim Total As Double
 Dim CountLessThan01 As Long

 DataToSummarize = Sheets(1).Range("A1:A100").Value2 'faster than .Value
 Total = 0
 CountLessThan01 = 0
 For i = 1 To 100
 Total = Total + DataToSummarize(i, 1)
 If DataToSummarize(i, 1) < 0.1 Then
 CountLessThan01 = CountLessThan01 + 1
 End If
 Next i
 Debug.Print Total & ", " & CountLessThan01
End Sub

But instead of writing any loop you can use Application.Worksheetfunction which is very handy for executing
simple formulas:

Sub UseWorksheetFunction()
 Dim Total As Double
 Dim CountLessThan01 As Long

 With Application.WorksheetFunction
 Total = .Sum(Sheets(1).Range("A1:A100"))
 CountLessThan01 = .CountIf(Sheets(1).Range("A1:A100"), "<0.1")
 End With

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Excel® VBA Notes for Professionals 112

 Debug.Print Total & ", " & CountLessThan01
End Sub

Or, for more complex calculations you can even use Application.Evaluate:

Sub UseEvaluate()
 Dim Total As Double
 Dim CountLessThan01 As Long

 With Application
 Total = .Evaluate("SUM(" & Sheet1.Range("A1:A100").Address(_
 external:=True) & ")")
 CountLessThan01 = .Evaluate("COUNTIF('Sheet1'!A1:A100,""<0.1"")")
 End With

 Debug.Print Total & ", " & CountLessThan01
End Sub

And finally, running above Subs 25,000 times each, here is the average (5 tests) time in milliseconds (of course it'll
be different on each pc, but compared to each other they'll behave similarly):

UseWorksheetFunction: 2156 ms1.
UseArray: 2219 ms (+ 3 %)2.
UseEvaluate: 4693 ms (+ 118 %)3.
UseRange: 6530 ms (+ 203 %)4.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Excel® VBA Notes for Professionals 113

Chapter 30: Excel VBA Tips and Tricks
Section 30.1: Using xlVeryHidden Sheets
Worksheets in excel have three options for the Visible property. These options are represented by constants in
the xlSheetVisibility enumeration and are as follows:

xlVisible or xlSheetVisible value: -1 (the default for new sheets)1.
xlHidden or xlSheetHidden value: 02.
xlVeryHidden xlSheetVeryHidden value: 23.

Visible sheets represent the default visibility for sheets. They are visible in the sheet tab bar and can be freely
selected and viewed. Hidden sheets are hidden from the sheet tab bar and are thus not selectable. However,
hidden sheets can be unhidden from the excel window by right clicking on the sheet tabs and selecting "Unhide"

Very Hidden sheets, on the other hand, are only accessible through the Visual Basic Editor. This makes them an
incredibly useful tool for storing data across instances of excel as well as storing data that should be hidden from
end users. The sheets can be accessed by named reference within VBA code, allowing easy use of the stored data.

To manually change a worksheet's .Visible property to xlSheetVeryHidden, open the VBE's Properties window
(F4), select the worksheet you want to change and use the drop-down in the thirteenth row to make your
selection.

To change a worksheet's .Visible property to xlSheetVeryHidden¹ in code, similarly access the .Visible property and
assign a new value.

with Sheet3
 .Visible = xlSheetVeryHidden
end with

¹ Both xlVeryHidden and xlSheetVeryHidden return a numerical value of 2 (they are interchangeable).

http://i.stack.imgur.com/fCX7s.png
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Excel® VBA Notes for Professionals 114

Section 30.2: Using Strings with Delimiters in Place of Dynamic
Arrays
Using Dynamic Arrays in VBA can be quite clunky and time intensive over very large data sets. When storing simple
data types in a dynamic array (Strings, Numbers, Booleans etc.), one can avoid the ReDim Preserve statements
required of dynamic arrays in VBA by using the Split() function with some clever string procedures. For example,
we will look at a loop that adds a series of values from a range to a string based on some conditions, then uses that
string to populate the values of a ListBox.

Private Sub UserForm_Initialize()

Dim Count As Long, DataString As String, Delimiter As String

For Count = 1 To ActiveSheet.UsedRows.Count
 If ActiveSheet.Range("A" & Count).Value <> "Your Condition" Then
 RowString = RowString & Delimiter & ActiveSheet.Range("A" & Count).Value
 Delimiter = "><" 'By setting the delimiter here in the loop, you prevent an extra occurance
of the delimiter within the string
 End If
Next Count

ListBox1.List = Split(DataString, Delimiter)

End Sub

The Delimiter string itself can be set to any value, but it is prudent to choose a value which will not naturally occur
within the set. Say, for example, you were processing a column of dates. In that case, using ., -, or / would be
unwise as delimiters, as the dates could be formatted to use any one of these, generating more data points than
you anticipated.

Note: There are limitations to using this method (namely the maximum length of strings), so it should be used with
caution in cases of very large datasets. This is not necessarily the fastest or most effective method for creating
dynamic arrays in VBA, but it is a viable alternative.

Section 30.3: Worksheet .Name, .Index or .CodeName
We know that 'best practise' dictates that a range object should have its parent worksheet explicitly referenced. A
worksheet can be referred to by its .Name property, numerical .Index property or its .CodeName property but a
user can reorder the worksheet queue by simply dragging a name tab or rename the worksheet with a double-click
on the same tab and some typing in an unprotected workbook.

Consider a standard three worksheet. You have renamed the three worksheets Monday, Tuesday and Wednesday
in that order and coded VBA sub procedures that reference these. Now consider that one user comes along and
decides that Monday belongs at the end of the worksheet queue then another comes along and decides that the
worksheet names look better in French. You now have a workbook with a worksheet name tab queue that looks
something like the following.

If you had used either of the following worksheet reference methods, your code would now be broken.

'reference worksheet by .Name
with worksheets("Monday")

http://i.stack.imgur.com/YRXYF.png
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Excel® VBA Notes for Professionals 115

 'operation code here; for example:
 .Range(.Cells(2, "A"), .Cells(.Rows.Count, "A").End(xlUp)) = 1
end with

'reference worksheet by ordinal .Index
with worksheets(1)
 'operation code here; for example:
 .Range(.Cells(2, "A"), .Cells(.Rows.Count, "A").End(xlUp)) = 1
end with

Both the original order and the original worksheet name have been compromised. However, if you had used the
worksheet's .CodeName property, your sub procedure would still be operational

with Sheet1
 'operation code here; for example:
 .Range(.Cells(2, "A"), .Cells(.Rows.Count, "A").End(xlUp)) = 1
end with

The following image shows the VBA Project window ([Ctrl]+R) which lists the worksheets by .CodeName then by
.Name (in brackets). The order they are displayed does not change; the ordinal .Index is taken by the order they are
displayed in the name tab queue in the worksheet window.

While it is uncommon to rename a .CodeName, it is not impossible. Simply open the VBE's Properties window ([F4]).

http://i.stack.imgur.com/94gJ6.png
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Excel® VBA Notes for Professionals 116

The worksheet .CodeName is in the first row. The worksheet's .Name is in the tenth. Both are editable.

Section 30.4: Double Click Event for Excel Shapes
By default, Shapes in Excel do not have a specific way to handle single vs. double clicks, containing only the
"OnAction" property to allow you to handle clicks. However, there may be instances where your code requires you
to act differently (or exclusively) on a double click. The following subroutine can be added into your VBA project
and, when set as the OnAction routine for your shape, allow you to act on double clicks.

Public Const DOUBLECLICK_WAIT as Double = 0.25 'Modify to adjust click delay
Public LastClickObj As String, LastClickTime As Date

Sub ShapeDoubleClick()

 If LastClickObj = "" Then
 LastClickObj = Application.Caller
 LastClickTime = CDbl(Timer)
 Else
 If CDbl(Timer) - LastClickTime > DOUBLECLICK_WAIT Then
 LastClickObj = Application.Caller
 LastClickTime = CDbl(Timer)
 Else
 If LastClickObj = Application.Caller Then
 'Your desired Double Click code here
 LastClickObj = ""
 Else
 LastClickObj = Application.Caller
 LastClickTime = CDbl(Timer)
 End If
 End If
 End If

End Sub

This routine will cause the shape to functionally ignore the first click, only running your desired code on the second
click within the specified time span.

http://i.stack.imgur.com/jmror.png
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Excel® VBA Notes for Professionals 117

Section 30.5: Open File Dialog - Multiple Files
This subroutine is a quick example on how to allow a user to select multiple files and then do something with those
file paths, such as get the file names and send it to the console via debug.print.

Option Explicit

Sub OpenMultipleFiles()
 Dim fd As FileDialog
 Dim fileChosen As Integer
 Dim i As Integer
 Dim basename As String
 Dim fso As Variant
 Set fso = CreateObject("Scripting.FileSystemObject")
 Set fd = Application.FileDialog(msoFileDialogFilePicker)
 basename = fso.getBaseName(ActiveWorkbook.Name)
 fd.InitialFileName = ActiveWorkbook.Path ' Set Default Location to the Active Workbook Path
 fd.InitialView = msoFileDialogViewList
 fd.AllowMultiSelect = True

 fileChosen = fd.Show
 If fileChosen = -1 Then
 'open each of the files chosen
 For i = 1 To fd.SelectedItems.Count
 Debug.Print (fd.SelectedItems(i))
 Dim fileName As String
 ' do something with the files.
 fileName = fso.getFileName(fd.SelectedItems(i))
 Debug.Print (fileName)
 Next i
 End If

End Sub

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Excel® VBA Notes for Professionals 118

Chapter 31: Common Mistakes
Section 31.1: Qualifying References
When referring to a worksheet, a range or individual cells, it is important to fully qualify the reference.

For example:

ThisWorkbook.Worksheets("Sheet1").Range(Cells(1, 2), Cells(2, 3)).Copy

Is not fully qualified: The Cells references do not have a workbook and worksheet associated with them. Without
an explicit reference, Cells refers to the ActiveSheet by default. So this code will fail (produce incorrect results) if a
worksheet other than Sheet1 is the current ActiveSheet.

The easiest way to correct this is to use a With statement as follows:

With ThisWorkbook.Worksheets("Sheet1")
 .Range(.Cells(1, 2), .Cells(2, 3)).Copy
End With

Alternatively, you can use a Worksheet variable. (This will most likely be preferred method if your code needs to
reference multiple Worksheets, like copying data from one sheet to another.)

Dim ws1 As Worksheet
Set ws1 = ThisWorkbook.Worksheets("Sheet1")
ws1.Range(ws1.Cells(1, 2), ws1.Cells(2, 3)).Copy

Another frequent problem is referencing the Worksheets collection without qualifying the Workbook. For example:

Worksheets("Sheet1").Copy

The worksheet Sheet1 is not fully qualified, and lacks a workbook. This could fail if multiple workbooks are
referenced in the code. Instead, use one of the following:

ThisWorkbook.Worksheets("Sheet1") '<--ThisWorkbook refers to the workbook containing
 'the running VBA code
Workbooks("Book1").Worksheets("Sheet1") '<--Where Book1 is the workbook containing Sheet1

However, avoid using the following:

ActiveWorkbook.Worksheets("Sheet1") '<--Valid, but if another workbook is activated
 'the reference will be changed

Similarly for range objects, if not explicitly qualified, the range will refer to the currently active sheet:

Range("a1")

Is the same as:

ActiveSheet.Range("a1")

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Excel® VBA Notes for Professionals 119

Section 31.2: Deleting rows or columns in a loop
If you want to delete rows (or columns) in a loop, you should always loop starting from the end of range and move
back in every step. In case of using the code:

Dim i As Long
With Workbooks("Book1").Worksheets("Sheet1")
 For i = 1 To 4
 If IsEmpty(.Cells(i, 1)) Then .Rows(i).Delete
 Next i
End With

You will miss some rows. For example, if the code deletes row 3, then row 4 becomes row 3. However, variable i
will change to 4. So, in this case the code will miss one row and check another, which wasn't in range previously.

The right code would be

Dim i As Long
With Workbooks("Book1").Worksheets("Sheet1")
 For i = 4 To 1 Step -1
 If IsEmpty(.Cells(i, 1)) Then .Rows(i).Delete
 Next i
End With

Section 31.3: ActiveWorkbook vs. ThisWorkbook
ActiveWorkbook and ThisWorkbook sometimes get used interchangeably by new users of VBA without fully
understanding which each object relates to, this can cause undesired behaviour at run-time. Both of these objects
belong to the Application Object

The ActiveWorkbook object refers to the workbook that is currently in the top-most view of the Excel application
object at the time of execution. (e.g. The workbook that you can see and interact with at the point when this object is
referenced)

Sub ActiveWorkbookExample()

'// Let's assume that 'Other Workbook.xlsx' has "Bar" written in A1.

 ActiveWorkbook.ActiveSheet.Range("A1").Value = "Foo"
 Debug.Print ActiveWorkbook.ActiveSheet.Range("A1").Value '// Prints "Foo"

 Workbooks.Open("C:\Users\BloggsJ\Other Workbook.xlsx")
 Debug.Print ActiveWorkbook.ActiveSheet.Range("A1").Value '// Prints "Bar"

 Workbooks.Add 1
 Debug.Print ActiveWorkbook.ActiveSheet.Range("A1").Value '// Prints nothing

End Sub

The ThisWorkbook object refers to the workbook in which the code belongs to at the time it is being executed.

Sub ThisWorkbookExample()

'// Let's assume to begin that this code is in the same workbook that is currently active

 ActiveWorkbook.Sheet1.Range("A1").Value = "Foo"
 Workbooks.Add 1

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Excel® VBA Notes for Professionals 120

 ActiveWorkbook.ActiveSheet.Range("A1").Value = "Bar"

 Debug.Print ActiveWorkbook.ActiveSheet.Range("A1").Value '// Prints "Bar"
 Debug.Print ThisWorkbook.Sheet1.Range("A1").Value '// Prints "Foo"

End Sub

Section 31.4: Single Document Interface Versus Multiple
Document Interfaces

Be aware that Microsoft Excel 2013 (and higher) uses Single Document Interface (SDI) and that Excel 2010
(And below) uses Multiple Document Interfaces (MDI).

This implies that for Excel 2013 (SDI), each workbook in a single instance of Excel contains its own ribbon UI:

Conversely for Excel 2010, each workbook in a single instance of Excel utilized a common ribbon UI (MDI):

http://i.stack.imgur.com/VY2TA.jpg
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Excel® VBA Notes for Professionals 121

This raise some important issues if you want to migrate a VBA code (2010 <->2013) that interact with the Ribbon.

A procedure has to be created to update ribbon UI controls in the same state across all workbooks for
Excel 2013 and Higher.

Note that :

All Excel application-level window methods, events, and properties remain unaffected.1.
(Application.ActiveWindow, Application.Windows ...)
In Excel 2013 and higher (SDI) all of the workbook-level window methods, events, and properties now2.
operate on the top level window. It is possible to retrieve the handle of this top level window with
Application.Hwnd

To get more details, see the source of this example: MSDN.

This also causes some trouble with modeless userforms. See Here for a solution.

http://i.stack.imgur.com/I4Dv1.jpg
https://msdn.microsoft.com/fr-fr/library/office/dn251093.aspx
http://www.jkp-ads.com/Articles/keepuserformontop.asp
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Excel® VBA Notes for Professionals 122

Credits
Thank you greatly to all the people from Stack Overflow Documentation who helped provide this content,

more changes can be sent to web@petercv.com for new content to be published or updated

Adam Chapter 4
Alexis Olson Chapter 29
Alon Adler Chapter 2
Andy Terra Chapters 5 and 30
Branislav Kollár Chapters 1, 4 and 29
Byron Wall Chapter 21
Captain Grumpy Chapters 18 and 20
Chel Chapters 27 and 29
Cody G. Chapters 1, 28, 29 and 30
Comintern Chapter 29
curious Chapter 14
Doug Coats Chapters 1, 4 and 12
EEM Chapter 1
Egan Wolf Chapter 31
Etheur Chapter 28
Excel Developers Chapter 11
FreeMan Chapter 29
genespos Chapter 29
Gordon Bell Chapters 1 and 31
Gregor y Chapter 28
Hubisan Chapters 2, 14 and 29
Jeeped Chapters 8, 18, 29 and 30
jlookup Chapter 18
Joel Spolsky Chapters 1, 4 and 20
Julian Kuchlbauer Chapter 28
Kaz Chapter 1
Kyle Chapters 28 and 29
Máté Juhász Chapter 29
Macro Man Chapters 1, 29, 30 and 31
Malick Chapters 1, 8, 18, 29 and 31
Masoud Chapter 26
Miguel_Ryu Chapter 2
Mike Chapter 24
Miqi180 Chapter 14
Munkeeface Chapter 29
paul bica Chapters 14, 26 and 29
PeterT Chapters 10, 17 and 29
Portland Runner Chapters 5 and 29
P�ʜ Chapter 29
quadrature Chapters 7 and 15
R3uK Chapters 6 and 14
RGA Chapters 1, 14, 23, 28, 29 and 30
Robby Chapter 24
Ron McMahon Chapter 28
Sgdva Chapter 19
Shahin Chapter 2
Shai Rado Chapters 1, 12, 14 and 29

mailto:web@petercv.com
https://stackoverflow.com/users/1126985/
https://stackoverflow.com/users/765226/
https://stackoverflow.com/users/908624/
https://stackoverflow.com/users/447485/
https://stackoverflow.com/users/4636801/
https://stackoverflow.com/users/4288101/
https://stackoverflow.com/users/6803420/
https://stackoverflow.com/users/2146688/
https://stackoverflow.com/users/2446254/
https://stackoverflow.com/users/4088852/
https://stackoverflow.com/users/6037536/
https://stackoverflow.com/users/5009293/
https://stackoverflow.com/users/4892468/
https://stackoverflow.com/users/5722505/
https://stackoverflow.com/users/4927169/
https://stackoverflow.com/users/1523914/
https://stackoverflow.com/users/2344413/
https://stackoverflow.com/users/4293613/
https://stackoverflow.com/users/16473/
https://stackoverflow.com/users/4496560/
https://stackoverflow.com/users/1365754/
https://stackoverflow.com/users/4039065/
https://stackoverflow.com/users/5216265/
https://stackoverflow.com/users/4/
https://stackoverflow.com/users/6588969/
https://stackoverflow.com/users/4169411/
https://stackoverflow.com/users/4043845/
https://stackoverflow.com/users/4721734/
https://stackoverflow.com/users/4240221/
https://stackoverflow.com/users/3205529/
https://stackoverflow.com/users/6461462/
https://stackoverflow.com/users/3005534/
https://stackoverflow.com/users/2911241/
https://stackoverflow.com/users/3648187/
https://stackoverflow.com/users/2992687/
https://stackoverflow.com/users/4914662/
https://stackoverflow.com/users/4717755/
https://stackoverflow.com/users/2521004/
https://stackoverflow.com/users/3219613/
https://stackoverflow.com/users/3219613/
https://stackoverflow.com/users/3219613/
https://stackoverflow.com/users/6254385/
https://stackoverflow.com/users/4628637/
https://stackoverflow.com/users/6408573/
https://stackoverflow.com/users/5298189/
https://stackoverflow.com/users/2205331/
https://stackoverflow.com/users/3221380/
https://stackoverflow.com/users/7769242/
https://stackoverflow.com/users/6344363/
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Excel® VBA Notes for Professionals 123

Slai Chapters 8 and 14
Stefan Pinnow Chapter 29
SteveES Chapter 3
Steven Schroeder Chapters 28 and 29
SWa Chapter 31
T.M. Chapters 7, 22 and 26
TheGuyThatDoesn'tKnowMuch Chapter 27
ThunderFrame Chapter 29
Toast Chapters 1, 28 and 31
user3561813 Chapter 8
Vegard Chapters 4 and 8
Verzweifler Chapter 29
Vityata Chapter 13
Zsmaster Chapters 9, 16 and 25

https://stackoverflow.com/users/1383168/
https://stackoverflow.com/users/5776000/
https://stackoverflow.com/users/7648526/
https://stackoverflow.com/users/1197635/
https://stackoverflow.com/users/1240154/
https://stackoverflow.com/users/6460297/
https://stackoverflow.com/users/3918993/
https://stackoverflow.com/users/5757159/
https://stackoverflow.com/users/4747836/
https://stackoverflow.com/users/3561813/
https://stackoverflow.com/users/4604845/
https://stackoverflow.com/users/4600127/
https://stackoverflow.com/users/5448626/
https://stackoverflow.com/users/5829910/
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

You may also like

https://goalkicker.com/DotNETFrameworkBook
https://goalkicker.com/CSharpBook
https://goalkicker.com/HTML5Book
https://goalkicker.com/EntityFrameworkBook
https://goalkicker.com/MicrosoftSQLServerBook
https://goalkicker.com/PowerShellBook
https://goalkicker.com/RBook
https://goalkicker.com/VBABook
https://goalkicker.com/VisualBasic_NETBook

	Content list
	About
	Chapter 1: Getting started with Excel VBA
	Section 1.1: Opening the Visual Basic Editor (VBE)
	Section 1.2: Declaring Variables
	Section 1.3: Adding a new Object Library Reference
	Section 1.4: Hello World
	Section 1.5: Getting Started with the Excel Object Model

	Chapter 2: Arrays
	Section 2.1: Dynamic Arrays (Array Resizing and Dynamic Handling)
	Section 2.2: Populating arrays (adding values)
	Section 2.3: Jagged Arrays (Arrays of Arrays)
	Section 2.4: Check if Array is Initialized (If it contains elements or not)
	Section 2.5: Dynamic Arrays [Array Declaration, Resizing]

	Chapter 3: Conditional statements
	Section 3.1: The If statement

	Chapter 4: Ranges and Cells
	Section 4.1: Ways to refer to a single cell
	Section 4.2: Creating a Range
	Section 4.3: Oset Property
	Section 4.4: Saving a reference to a cell in a variable
	Section 4.5: How to Transpose Ranges (Horizontal to Vertical & vice versa)

	Chapter 5: Named Ranges
	Section 5.1: Deﬁne A Named Range
	Section 5.2: Using Named Ranges in VBA
	Section 5.3: Manage Named Range(s) using Name Manager
	Section 5.4: Named Range Arrays

	Chapter 6: Merged Cells / Ranges
	Section 6.1: Think twice before using Merged Cells/Ranges

	Chapter 7: Locating duplicate values in a range
	Section 7.1: Find duplicates in a range

	Chapter 8: User Deﬁned Functions (UDFs)
	Section 8.1: Allow full column references without penalty
	Section 8.2: Count Unique values in Range
	Section 8.3: UDF - Hello World

	Chapter 9: Conditional formatting using VBA
	Section 9.1: FormatConditions.Add
	Section 9.2: Remove conditional format
	Section 9.3: FormatConditions.AddUniqueValues
	Section 9.4: FormatConditions.AddTop10
	Section 9.5: FormatConditions.AddAboveAverage
	Section 9.6: FormatConditions.AddIconSetCondition

	Chapter 10: Workbooks
	Section 10.1: When To Use ActiveWorkbook and ThisWorkbook
	Section 10.2: Changing The Default Number of Worksheets In A New Workbook
	Section 10.3: Application Workbooks
	Section 10.4: Opening A (New) Workbook, Even If It's Already Open
	Section 10.5: Saving A Workbook Without Asking The User

	Chapter 11: Working with Excel Tables in VBA
	Section 11.1: Instantiating a ListObject
	Section 11.2: Working with ListRows / ListColumns
	Section 11.3: Converting an Excel Table to a normal range

	Chapter 12: Loop through all Sheets in Active Workbook
	Section 12.1: Retrieve all Worksheets Names in Active Workbook
	Section 12.2: Loop Through all Sheets in all Files in a Folder

	Chapter 13: Use Worksheet object and not Sheet object
	Section 13.1: Print the name of the ﬁrst object

	Chapter 14: Methods for Finding the Last Used Row or Column in a Worksheet
	Section 14.1: Find the Last Non-Empty Cell in a Column
	Section 14.2: Find the Last Non-Empty Row in Worksheet
	Section 14.3: Find the Last Non-Empty Column in Worksheet
	Section 14.4: Find the Last Non-Empty Cell in a Row
	Section 14.5: Get the row of the last cell in a range
	Section 14.6: Find Last Row Using Named Range
	Section 14.7: Last cell in Range.CurrentRegion
	Section 14.8: Find the Last Non-Empty Cell in Worksheet - Performance (Array)

	Chapter 15: Creating a drop-down menu in the Active Worksheet with a Combo Box
	Section 15.1: Example 2: Options Not Included
	Section 15.2: Jimi Hendrix Menu

	Chapter 16: File System Object
	Section 16.1: File, folder, drive exists
	Section 16.2: Basic ﬁle operations
	Section 16.3: Basic folder operations
	Section 16.4: Other operations

	Chapter 17: Pivot Tables
	Section 17.1: Adding Fields to a Pivot Table
	Section 17.2: Creating a Pivot Table
	Section 17.3: Pivot Table Ranges
	Section 17.4: Formatting the Pivot Table Data

	Chapter 18: Binding
	Section 18.1: Early Binding vs Late Binding

	Chapter 19: autoﬁlter ; Uses and best practices
	Section 19.1: Smartﬁlter!

	Chapter 20: Application object
	Section 20.1: Simple Application Object example: Display Excel and VBE Version
	Section 20.2: Simple Application Object example: Minimize the Excel window

	Chapter 21: Charts and Charting
	Section 21.1: Creating a Chart with Ranges and a Fixed Name
	Section 21.2: Creating an empty Chart
	Section 21.3: Create a Chart by Modifying the SERIES formula
	Section 21.4: Arranging Charts into a Grid

	Chapter 22: CustomDocumentProperties in practice
	Section 22.1: Organizing new invoice numbers

	Chapter 23: PowerPoint Integration Through VBA
	Section 23.1: The Basics: Launching PowerPoint from VBA

	Chapter 24: How to record a Macro
	Section 24.1: How to record a Macro

	Chapter 25: SQL in Excel VBA - Best Practices
	Section 25.1: How to use ADODB.Connection in VBA?

	Chapter 26: Excel-VBA Optimization
	Section 26.1: Optimizing Error Search by Extended Debugging
	Section 26.2: Disabling Worksheet Updating
	Section 26.3: Row Deletion - Performance
	Section 26.4: Disabling All Excel Functionality Before executing large macros
	Section 26.5: Checking time of execution
	Section 26.6: Using With blocks

	Chapter 27: VBA Security
	Section 27.1: Password Protect your VBA

	Chapter 28: Debugging and Troubleshooting
	Section 28.1: Immediate Window
	Section 28.2: Use Timer to Find Bottlenecks in Performance
	Section 28.3: Debugger Locals Window
	Section 28.4: Debug.Print
	Section 28.5: Stop
	Section 28.6: Adding a Breakpoint to your code

	Chapter 29: VBA Best Practices
	Section 29.1: ALWAYS Use "Option Explicit"
	Section 29.2: Work with Arrays, Not With Ranges
	Section 29.3: Switch o properties during macro execution
	Section 29.4: Use VB constants when available
	Section 29.5: Avoid using SELECT or ACTIVATE
	Section 29.6: Always deﬁne and set references to all Workbooks and Sheets
	Section 29.7: Use descriptive variable naming
	Section 29.8: Document Your Work
	Section 29.9: Error Handling
	Section 29.10: Never Assume The Worksheet
	Section 29.11: Avoid re-purposing the names of Properties or Methods as your variables
	Section 29.12: Avoid using ActiveCell or ActiveSheet in Excel
	Section 29.13: WorksheetFunction object executes faster than a UDF equivalent

	Chapter 30: Excel VBA Tips and Tricks
	Section 30.1: Using xlVeryHidden Sheets
	Section 30.2: Using Strings with Delimiters in Place of Dynamic Arrays
	Section 30.3: Worksheet .Name, .Index or .CodeName
	Section 30.4: Double Click Event for Excel Shapes
	Section 30.5: Open File Dialog - Multiple Files

	Chapter 31: Common Mistakes
	Section 31.1: Qualifying References
	Section 31.2: Deleting rows or columns in a loop
	Section 31.3: ActiveWorkbook vs. ThisWorkbook
	Section 31.4: Single Document Interface Versus Multiple Document Interfaces

	Credits
	You may also like

